The Impact of Warming in Greenland on the North-Atlantic, Arctic, And West Pacific Oscillations, As Well as on Fire Risk in Siberia Is Increasing
Main Article Content
Article Details
References
[1]Remote monitoring information system of the Federal Forestry Agency: official website. – Moscow. URL [Electronic text]. Access mode: https://pushkino.aviales.ru/main_pages/index.shtml.
[2]Shubkin, R. G. Results of long-term forecasting of large-scale forest fires in the Baikal region / Shubkin R. G., Shirinkin P. V. Scientific and analytical journal "Siberian Fire and Rescue Bulletin", 2016, No. 3. - P. 35 - 38. - Access mode: http://vestnik.sibpsa.ru/wp-content/uploads/2016/v3/N3_9-12.pdf.
[3]IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.
[4]The Third Assessment Report on Climate Change and Its Impacts on the Russian Federation. Summary. – St. Petersburg: Science-Intensive Technologies, 2022. – 124 p.
[5] Kholoptsev A.V. Physical foundations of the theory of long-term and ultra-long-term forecasting of the risks of landscape fires: monograph. / A.V. Kholoptsev, R.G. Shubkin, I.Yu. Sergeev, A.N. Baturo, N.Yu. Proskova - Zheleznogorsk: Siberian Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia, 2024. - 337 p. - Text: electronic// Electronic resource of the digital educational environment of secondary vocational education PROFobrazovanie: [website]. — URL: https://profspo.ru/books/140586 (date of access: 16.06.2025).
[6]Akperov M.G., Mokhov I.I., Changes in cyclonic activity and precipitation in the atmosphere of extratropical latitudes of the Northern Hemisphere in recent decades according to ERA5 reanalysis data. Atmospheric and Oceanic Optics. 36.- No. 5 (2023). –P.377-380.
[7]Hurrell J.W., Deser C. 2010. North Atlantic climate variability: the role of the North Atlantic Oscillation. – Journal of Marine Systems, vol. 79(3-4), pp. 231-244. https://doi.org/10.1016/j.jmarsys.2009.11.002.
[8]Salby, M. L. Fundamentals of Atmospheric Physics/ M. L. Salby- New York: Academic Press/ - 1996. – 560 p.
[9]Thompson, D.W.J., Wallace, J.M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters. Vol. 25. No. 9. P. 1297–1300.
[10]Ye, K., & Jung, T. (2023). Linkages between the Atlantic Multidecadal Oscillation, the Arctic Oscillation, and Mid-Latitude Weather Regimes. Journal of Climate, 36(2), 535-552.
[11]Chen, H. W., et al. (2022). Arctic Sea-Ice Loss and Weakened Atmospheric Circulation: The Role in Recent Siberian Heatwaves and Fire Activity. Nature Communications, 13, 4601.
[12]Aru, H., Chen, S., & Chen, W. (2021). Comparisons of the different definitions of the western Pacific pattern and associated winter climate anomalies in Eurasia and North America. International Journal of Climatology, 41(4), 2840–2859. https://doi.org/10.1002/joc.6993.
[13]13. Mokhov I.I. 2016. Atmospheric blockings and associated climatic anomalies. Nonlinear waves. [Electronic resource]. Access mode: https://docplayer.com/35005034-Atmosfernye-blokingi-i-svyazannye-s-nimi-klimaticheskie-anomalii.html.
[14]Kryzhov V.N., Gorelits O.V. Arctic Oscillation and its influence on temperature and precipitation in Northern Eurasia in the 20th century//Meteorology and Hydrology. - 2015. - No. 11. P. 5-19.
[15]Schumacher, D. L., et al. (2023). The Role of Blocking Anticyclones in the Amplification of Siberian Heat Extremes. npj Climate and Atmospheric Science, 6(1), 45.
[16]Nesterov E.S. North Atlantic Oscillation: Atmosphere and Ocean. – Moscow: Triada, Ltd., 2013. – 144 p.
[17]Ueno K. Inter-annual variability of surface cyclone tracks, atmospheric circulation patterns, and precipitation patterns, in winter J. Meteor. Soc. Japan. — 1993. — Vol. 71, № 6. — P. 655-671. https://doi.org/10.2151/jmsj1965.71.6_655.
[18]Wallac, J.V, Gutzler D.S. Teleconnections in the geopotential height fild during the Northern Hemisphere winter// Mon. Weater Rev., 1981. - Vol.71.- №6.- PP.655-671.
[19]Mokhov I.I., Petukhov V.K. Centers of action in the atmosphere and tendencies of their change // Izvestiya RAS. Physics of the atmosphere and ocean. - 2000. - V. 36, No. 3. - P. 321-329.
[20]Caesar, L. et al. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience. Vol. 14. February 25, 2021. https://doi.org/10.1038/s41561-021-00699-z.
[21]Kholoptsev, A.V. Greenland Warming Drives Weakening of the Atlantic Meridional Overturning Circulation and Amplified Fire Hazard in Northern Europe. Polar and Cold Regions Research, 2025. - Vol.1. -Ins.1. – PP.22-41.
[22]D. A. Kuznetsova, I. L. Bashmachnikov, On the mechanisms of variability of the Atlantic Meridional Ocean Circulation (AMOC). Oceanology, 2021, Vol. 61, No. 6, pp. 1–13.
[23]Buckley, M. W., & Marshall, J. (2016). Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics, 54(1), 5-63.
[24]Stommel H., The Gulf Stream. A Physical and Dynamical Description. 2-nd Edition- 2022 – 262с.
[25]Hurrell, J.W., Deser, C. (2010). North Atlantic climate variability: the role of the North Atlantic Oscillation Journal of Marine Systems. Vol. 79. No. 3-4. P. 231-244.
[26]Häkkinen, S., et al. (2023). The Role of Greenland Sea Ice and Labrador Convection in the Atlantic Meridional Overturning Circulation and Northern Hemisphere Climate. Climate Dynamics, 61(5-6), 2287-2302.
[27]Wang, C., Ren, B., Li, G., Zheng, J., Chen, L., & Jiang, L. (2024). Strengthening Relationship between the AO and the Occurrence Frequency of Arctic Daily Warming since the 1980s. Journal of Climate, 37(1), 3–19. https://doi.org/10.1175/JCLI-D-23-0177.
[28]Cohen, J., et al. (2021). Linking Arctic variability and change with mid-latitude weather and climate. WMO-WWRP/WCRP-AREP.
[29]Yakovleva, I. L. Bashmachnikov, D. A. Kuznetsova The influence of the Atlantic meridional oceanic circulation on the temperature of the upper layer of the North Atlantic and the Atlantic sector of the Arctic Ocean. Oceanology, 2023, Vol. 63, No. 2, pp. 173-181.
[30] Flis A.,Why is the Atlantic Ocean current collapsing, and can it cause global cooling? Global Weather Drivers. -2024. [Электронный ресурс]. Режим доступа: https://www.severe-weather.eu/learnweather/global-weather-drivers/why-is-the-atlantic-ocean-current-collapsing-and-can-it-cause-global-cooling-fa/.
[31]Lappo S.S. On the causes of heat advection to the north through the equator in the Atlantic Ocean. Study of the processes of interaction between the ocean and the atmosphere. Moscow: Gidrometeoizdat, 1984. Pp. 125–129.
[32]Broecker, W. (1991). The great ocean conveyor (PDF). Oceanography. 4 (2): 79–89.
[33]Barents, J. (1991). The Great Ocean Conveyor Oceanography. Vol. 4. No. 2. P. 79–89.
[34]Bocharov, A. V., Mokhov, I. I. (2020). On the Response of the Climate System to the Slowdown of the Atlantic Meridional Overturning Circulation. Meteorology and Hydrology. No. 10. pp. 17–30.
[35]Ditlevsen, P., & Ditlevsen, S. (2023). Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nature Communications, 14(1), 4254.
[36]Boers, N. (2021). Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11(8), 680-688.
[37]Lenton, T. M., et al. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences, 105(6), 1786-1793.
[38]Kholoptsev A.V., Nikiforova M.P. Solar activity and forecasts of physical-geographical processes. – Saarbrucken, Germany.: LAP Lambert Academic Publishing, 2013. – 352 p.
[39]IPCC AR6 WG1. (2021). Climate Change 2021: The Physical Science Basis. Chapter 9: Ocean, Cryosphere and Sea Level Change.
[40]The US National Oceanic and Atmospheric Administration (NOAA) database on changes in the AO index [Electronic resource]: URL: https://www.psl.noaa.gov/data/climateindices/list/.
[41]Hólm E., Janisková M., Keeley S. et al. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. – 2020. – Vol. 146. – P. 1999–2049.
[42]ERA5 Reanalysis Results Database hourly data on pressure levels from 1979 to present. [Electronic resource]. Access mode:https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form.
[43]Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., & Bamber, J. L. (2016). Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 9(7), 523–527.
[44]Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M., van den Broeke, M. R., & Noel, B. (2018). Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. Journal of Geophysical Research: Oceans, 123(3), 1827-1837.
[45]Yashayaev, I., & Loder, J. W. (2017). Further intensification of deep convection in the Labrador Sea in 2016. Geophysical Research Letters, 44(3), 1429-1438.
[46]Zhai, X., Johnson, H. L., Marshall, D. P., & Wunsch, C. (2015). On the wind-driven energy balance of the North Atlantic subpolar gyre. Journal of Physical Oceanography, 45(6), 1533-1549.
[47]Bashmachnikov I.L., Fedorov A.M., Vesman A.V., et al. Thermohaline convection in the subpolar seas of the North Atlantic and the North European Basin of the Arctic Ocean based on satellite and in situ data. Part 1: localization of convection regions. Modern problems of remote sensing of the Earth from space. 2018. Т. 15. № 7. С. 184–194.
[48]Bashmachnikov I.L., Fedorov A.M., Vesman A.V. et al. Thermohaline convection in the subpolar seas of the North Atlantic and the North European Basin of the Arctic Ocean based on satellite and in situ data. Part 2: convection intensity indices. Modern Problems of Remote Sensing of the Earth from Space. 2019. Т. 16. № 1. С. 191–201.
[49]Spall, M. A. (2010). Nonlocal topographic influences on deep convection: An idealized model for the Nordic Seas. Ocean Modelling, 32(1-2), 72-85.
[50]Gary, S. F., Lozier, M. S., Böning, C. W., & Biastoch, A. (2011). Deciphering the pathways for the deep limb of the Meridional Overturning Circulation. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17-18), 1781-1797.
[51]Pickart, R. S., & Spall, M. A. (2007). Impact of Labrador Sea convection on the North Atlantic Meridional Overturning Circulation. Journal of Physical Oceanography, 37(9), 2207-2237.
[52]Gervais, M., Shaman, J., & Kushnir, Y. (2018). Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic jet. Journal of Climate, 31(7), 2679-2695.
[53]Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5(5), 475-480.
[54]Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., & Saba, V. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700), 191-196.
[55]Thornalley, D. J., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C. M., Davis, R., ... & Keigwin, L. D. (2018). Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700), 227-230.
[56]Bashmachnikov I.L., Fedorov A.M., Golubkin P.A. et al. Mechanisms of interannual variability of deep convection in the Greenland Sea. Deep-Sea Research Part I: Oceanographic Research Papers. 2021. V. 174. Art. 103557. P. 1–20.
[57]Petit T., Lozier M.S., Josey S.A. et al. Atlantic Deep Water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophysical Research Letters. 2020. V. 47. № 22. P. 1–9.
[58]Hessilt, T. D., et al. (2022). Response of Siberian Fire Regimes to Zonal Asymmetry in Atmospheric Circulation. Environmental Research Letters, 17(5), 055003.

This work is licensed under a Creative Commons Attribution 4.0 International License.