Main Article Content

Authors

A. V. Kholoptsev

Abstract

One of the reasons for the change in fire danger associated with weather conditions in any part of Europe is the corresponding variations in average monthly surface air temperatures, as well as monthly precipitation. The factors, causing these variations, include changes in the state of the Atlantic Meridional Overturning Circulation, which has tended to weaken since the mid-19th century. This trend is driven by Greenland's warming climate, which is increasing the volume of cold freshwater flowing from its glaciers into the North Atlantic. A hypothesis has been put forward about the existence of areas in Europe for which the links between the aforementioned fire hazard factors and changes in average summer temperatures across the entire surface of Greenland have increased during the period of modern climate warming and are now significant. Testing this hypothesis showed, that such areas exist in the territories of some regions of Europe that belong to the Forest and Arctic zones. It has been established that with further warming of the climate in Greenland, the fire danger in such regions will continue to increase during the spring months. The proposed forecast corresponds to a scenario in which the ice cover on the territory of Greenland remains, and the current “soft” stage of weakening of the circulation in question does not turn into a “catastrophic” one. Therefore, it is advisable to take it into account when planning the further development of fire services and agriculture in Europe.

Keywords:
Greenland, Atlantic Meridional Overturning Circulation, thermal regime warming, fire weather risk, Northern Europe, climate linkages

Article Details

References

[1]Nesterov, V. G. (1949). Forest flammability and methods for determining it. Goslesbumizdat.

[2]Efremov, D. F., Zakharenkov, A. S., Kopeikin, M. A., Kuzmichev, E. P., Smetanina, M. I., & Soldatov, V. V. (2012). Prevention and warning measures for forest fires in the forest management system of the Russian Federation (E. P. Kuzmichev, Ed.). World Bank.

[3]Sverlova, L. I. (2000). Method for assessing fire hazard in forests based on weather conditions, taking into account atmospheric aridity zones and seasons.

[4]Federal Forestry Agency. (n.d.). Remote Monitoring Information System. Retrieved from https://pushkino.aviales.ru/main_pages/index.shtml.

[5]Shubkin, R. G., & Shirinkin, P. V. (2016). Results of long-term forecasting of large-scale forest fires in the Baikal region. Siberian Fire and Rescue Bulletin, (3), 35–38. http://vestnik.sibpsa.ru/wp-content/uploads/2016/v3/N3_9-12.pdf.

[6]Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.). (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

[7]Roshydromet. (2022). Third assessment report on climate change and its impacts in the Russian Federation: Executive summary. Naukoemkie Tekhnologii.

[8]Kholoptsov, A. V., Shubkin, R. G., Sergeev, I. Yu., Batur, A. N., & Proskova, N. Yu. (2024). Physical foundations of the theory of long-term and ultra-long-term forecasting of landscape fire risks: monograph. Siberian Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia. https://profspo.ru/books/140586.

[9]Akperov, M. G., & Mokhov, I. I. (2023). Changes in cyclonic activity and precipitation in the atmosphere of the extratropical latitudes of the Northern Hemisphere in recent decades according to ERA5 reanalysis data. Atmospheric and Oceanic Optics, 36(5), 377–380.

[10]Hurrell, J. W., & Deser, C. (2010). North Atlantic climate variability: The role of the North Atlantic Oscillation. Journal of Marine Systems, 79(3–4), 231–244. https://doi.org/10.1016/j.jmarsys.2009.11.002.

[11]Salby, M. L. (1996). Fundamentals of atmospheric physics. Academic Press.

[12]Buckley, M. W., & Marshall, J. (2016). Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics, 54(1), 5–63.

[13]Lappo, S. S. (1984). On the causes of heat advection northward across the equator in the Atlantic Ocean. In Study of ocean-atmosphere interaction processes (pp. 125–129). Hydrometeoizdat.

[14]Broecker, W. (1991). The great ocean conveyor. Oceanography, 4(2), 79–89.

[15]Nesterov, E. S. (2013). North Atlantic Oscillation: Atmosphere and ocean. Triada, Ltd.

[16]Ueno, K. (1993). Inter-annual variability of surface cyclone tracks, atmospheric circulation patterns, and precipitation patterns, in winter. Journal of the Meteorological Society of Japan, 71(6), 655–671. https://doi.org/10.2151/jmsj1965.71.6_655.

[17]Mokhov, I. I., & Petukhov, V. K. (2000). Centers of action in the atmosphere and trends in their change. Izvestiya, Atmospheric and Oceanic Physics, 36(3), 321–329.

[18]Stommel, H. (1963). The Gulf Stream. Foreign Literature Publishing House.

[19]Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N., & Rahmstorf, S. (2021). Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience, 14, 118–120. https://doi.org/10.1038/s41561-021-00699-z.

[20]Kuznetsova, D. A., & Bashmachnikov, I. L. (2021). On the mechanisms of variability of the Atlantic Meridional Oceanic Circulation (AMOC). Oceanology, 61(6), 771–783.

[21]Cohen, J., Zhang, X., Francis, J., Jung, T., Bengtsson, L., & Yoon, J. (2021). Linking Arctic variability and change with mid-latitude weather and climate (WMO-WWRP/WCRP-AREP Report).

[22]Yakovleva, D. A., Bashmachnikov, I. L., & Kuznetsova, D. A. (2023). Influence of Atlantic meridional ocean circulation on the temperature of the upper layer of the North Atlantic and the Atlantic sector of the Arctic Ocean. Oceanology, 63(2), 173–181.

[23]Chafik, L., & Rossby, T. (2019). Volume, heat, and freshwater divergences in the Subpolar North Atlantic suggest the Nordic Seas as key to the state of the Meridional Overturning Circulation. Geophysical Research Letters, 46(9), 4799–4808.

[24]Falina, A. S., & Sarafanov, A. A. (2015). On the formation of the lower layer of meridional thermohaline circulation in the North Atlantic. Doklady Earth Sciences, 461(2), 194–198.

[25]Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., deYoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns, W. E., Johnson, H. L., Karstensen, J., … Zantopp, R. (2019). A sea change in our view of overturning in the subpolar North Atlantic. Science, 363(6426), 516–521.

[26]Petit, T., Lozier, M. S., Josey, S. A., & Cunningham, S. A. (2020). Atlantic Deep Water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophysical Research Letters, 47(22), e2020GL091028.

[27]Rhein, M., Kieke, D., Hüttl-Kabus, S., Roessler, A., Mertens, C., Meissner, R., Klein, B., Böning, C. W., & Yashayaev, I. (2011). Deep water formation, the Subpolar Gyre, and the Meridional Overturning Circulation in the subpolar North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(17–18), 1819–1832.

[28]Talley, L. D. (2003). Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography, 33(3), 530–560.

[29]Böning, C. W., Bryan, F. O., Holland, W. R., & Döscher, R. (1996). Deep-water formation and the meridional overturning in a high-resolution model of the North Atlantic. Journal of Physical Oceanography, 26(7), 1142–1164.

[30]Pickart, R. S., & Spall, M. A. (2007). Impact of Labrador Sea convection on the North Atlantic Meridional Overturning Circulation. Journal of Physical Oceanography, 37(9), 2207–2227.

[31]Kanzow, T., Cunningham, S. A., Johns, W. E., Hirschi, J. J. M., Marotzke, J., Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L. M., Bryden, H. L., & Collins, J. (2010). Seasonal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Journal of Climate, 23(21), 5678–5698.

[32]Monin, A. S., & Shashkov, Yu. A. (1979). History of climate. Hydrometeoizdat.

[33]Flis, A. (2024). Why is the Atlantic Ocean current collapsing, and can it cause global cooling? Global Weather Drivers. Retrieved from https://www.severe-weather.eu/learnweather/global-weather-drivers/why-is-the-atlantic-ocean-current-collapsing-and-can-it-cause-global-cooling-fa/.

[34]Ditlevsen, P., & Ditlevsen, S. (2023). Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nature Communications, 14(1), 4254.

[35]Boers, N. (2021). Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11(8), 680–688.

[36]Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., & Schellnhuber, H. J. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences, 105(6), 1786–1793.

[37]Kholoptsev, A. V., & Nikiforova, M. P. (2013). Solar activity and predictions of physical-geographical processes. LAP Lambert Academic Publishing.

[38]Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.‐N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.

[39]Copernicus Climate Change Service (C3S). (n.d.). ERA5 hourly data on pressure levels from 1979 to present [Data set]. Retrieved from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form.

[40]Kholoptev, A. V., & Shubkin, R. G. (2025). Territories of Western and Central Siberia where a priori estimates of the validity of long-term forecasts of the thermal regime in the 21st century were unbiased or underestimated. In Collection of materials from the IX International Arctic Summit “Arctic: Prospects, Innovation, and Regional Development” (Part 2, pp. 26–32).

[41]Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., & Bamber, J. L. (2016). Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 9(7), 523–527.

[42]IPCC. (2019). IPCC special report on the ocean and cryosphere in a changing climate (H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer, Eds.).

[43]Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M., van den Broeke, M. R., & Noel, B. (2018). Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. Journal of Geophysical Research: Oceans, 123(3), 1827–1837.

[44]Yashayaev, I., & Loder, J. W. (2017). Further intensification of deep convection in the Labrador Sea in 2016. Geophysical Research Letters, 44(3), 1429–1438.

[45]Zhai, X., Johnson, H. L., Marshall, D. P., & Wunsch, C. (2015). On the wind-driven energy balance of the North Atlantic subpolar gyre. Journal of Physical Oceanography, 45(6), 1533–1549.

[46]Bashmachnikov, I. L., Fedorov, A. M., Vesman, A. V., Sokolovskiy, M. A., Golubkin, P. A., & Kulaev, A. M. (2018). Thermohaline convection in the subpolar seas of the North Atlantic and the North European SLO basin based on satellite and field data. Part 1: localization of convection regions. Modern Problems of Earth Remote Sensing, 15(7), 184–194.

[47]Bashmachnikov, I. L., Fedorov, A. M., Vesman, A. V., Sokolovskiy, M. A., Golubkin, P. A., & Kulaev, A. M. (2019). Thermohaline convection in the subpolar seas of the North Atlantic and the North European SLO basin based on satellite and field data. Part 2: Convection intensity indices. Modern Problems of Earth Remote Sensing, 16(1), 191–201.

[48]Spall, M. A. (2010). Nonlocal topographic influences on deep convection: An idealized model for the Nordic Seas. Ocean Modelling, 32(1–2), 72–85.

[49]Gary, S. F., Lozier, M. S., Böning, C. W., & Biastoch, A. (2011). Deciphering the pathways for the deep limb of the Meridional Overturning Circulation. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17–18), 1781–1797.

[50]Gervais, M., Shaman, J., & Kushnir, Y. (2018). Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic jet. Journal of Climate, 31(7), 2679–2695.

[51]Pickart, R. S., & Spall, M. A. (2007). Impact of Labrador Sea convection on the North Atlantic Meridional Overturning Circulation. Journal of Physical Oceanography, 37(9), 2207–2227.

[52]Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5(5), 475–480.

[53]Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., & Saba, V. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700), 191–196.

[54]Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C. M., Davis, R., Hall, I. R., Moffa-Sánchez, P., Rose, N. L., Spooner, P. T., Yashayaev, I., & Keigwin, L. D. (2018). Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700), 227–230.

[55]Bashmachnikov, I. L., Fedorov, A. M., Golubkin, P. A., Vesman, A. V., Belonenko, T. V., & Koldunov, A. V. (2021). Mechanisms of interannual variability of deep convection in the Greenland Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 174, 103557.

[56]Böning, C. W., Bryan, F. O., Holland, W. R., & Döscher, R. (1996). Deep-water formation and the meridional overturning in a high-resolution model of the North Atlantic. Journal of Physical Oceanography, 26(7), 1142–1164.

[57]Douglas, T. A., Jones, M. C., Hiemstra, C. A., & Arnold, J. R. (2020). Linkages between Arctic sea ice decline, atmospheric moisture transport, and summer forest fires in Siberia. Science Advances, 6(50), eabd3358.

[58]Drijfhout, S. S. (2015). Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Scientific Reports, 5, 14877.

[59]Lynch-Stieglitz, J. (2017). The Atlantic Meridional Overturning Circulation and abrupt climate change. Annual Review of Marine Science, 9, 83–104. https://doi.org/10.1146/annurev-marine-010816-060415.

Most read articles by the same author(s)