Climate-Adaptive Environment and Cost-Efficient Ceramics and Concrete-Like Construction Materials from Hazardous Industrial and Municipal Wastes
Main Article Content
Article Details
References
[1]Magalhaes, J.M., et al., 2004. Physical and chemical characterization of metal finishing industrial wastes, J. Envir. Manag. 75, 157-166. https://doi.org/10.1016/j.jenvman.2004.09.011.
[2]Economou-Eliopoulos, M. 2017. Geochemical constraints on the sources of Cr (VI) contamination in waters of Messapian (Central Evia) Basin. J. Appl. Geochem., 84, 13-25. https://doi.org/10.1016/j.apgeochem.2017.05.015.
[3]Novak, M. et al, 2017. Chromium isotope fractionations resulting from electroplating, chromatin and anodizing: Implications for groundwater pollution studies J. Appl. Geochem., 80, 134 -142. https://doi.org/10.1016/j.apgeochem.2017.03.009.
[4]Warchulski R., et al., 2019. Rainwater-induced migration of potentially toxic elements from a Zn–Pb slag dump in Ruda Śląska in light of mineralogical, geochemical and geophysical investigations. J. Appl. Geochem.,109, 104396.https://doi.org/10.1016/j.apgeochem.2019.104396.
[5]Matos, P.R., et al, 2019. Novel applications of waste foundry sand in conventional and dry-mix concretes J. Env. Manag. 244, 294-303. https://doi.org/10.1016/j.jenvman.2019.04.048.
[6]Mymrin, V., et al, 2016, Influence of kaolin clay on mechanical properties and on the structure formation processes of white ceramics with inclusion of hazardous sewage sludge, J. App. Clay Sci. 155,95-102. https://doi.org/doi.org/10.1016/j.clay.2018.01.006.
[7]Levitskii, I.A., Poznyak, A.I., 2015. Thermophysical characteristics of furnace tiles obtained using galvanic production wastes. J. Glass Cer. 72, 130-134.
[8]Mymrin, V., et al., 2013. Oily diatomite and galvanic wastes as raw materials for red ceramics fabrication. J. Con. Build. Mat. 41, 360-364. https://doi.org/10.1016/j.conbuildmat.2012.11.041.

This work is licensed under a Creative Commons Attribution 4.0 International License.