Ferrite Composite Materials for Water Purification from Organic Dyes
Main Article Content
Article Details
References
[1]Larin, V., Datsenko, V., Egorova, L., Hraivoronska, I., Herasymchuk, T. (2020). Physical and chemical properties of copper-zinc galvanic sludge in the process of thermal treatment. French-Ukrainian J. of Chem, 8(1), 66–75. https://doi.org/10.17721/fujcV8I1P66-75.
[2]Datsenko, V., Khimenko, N., Egorova, L., Svishchova, Ya., Dubyna, O., Budvytska, O., Lyubymova, N., Pasternak, V., Pusik, L. (2019). Сonstruction of the algorithm for assessing the environmental safety of galvanic sludges. Eastern-European J. of Enterprise Technologies, 6, 10(102), 42–48. https://dx.doi.org/10.15587/1729-4061.2019.188251.
[3]Datsenko, V.V., Khobotova, E.B., Vankevich, O.V., Tolmachov, S.M. (2022). Technically useful properties of copper-zinc ferrites. Functional Materials, 29(1), 62–71. https://doi.org/10.15407/fm29.01.62.
[4]Datsenko, V. (2021). Ion-Exchange Cleaning of Oil Washing Water from Chloride Ions. Petroleum and Coal, 63(2), 467–474.
[5]Datsenko, V., Larin, V. (2021). Evaluating the methods used for the regeneration process of copper-zinc solutions. Chemistry J. of Moldova. General, Industrial and Ecological chemistry, 16(1), 88–98. https://dx.doi.org/10.19261/cjm.2021.793.
[6]Khobotova, E.B., Kaliuzhna, Iu.S., Datsenko, V.V., Larin, V.I. (2021). Toxic and hydraulic activity of blast furnace slag as the main criteria for choosing the technology of their utilization. J. of Chem. and Techn., 29(2), 312–320. https://doi.org/10.15421/jchemtech.v29i2.228352.
[7]Khobotova, Е., Hraivoronska, І., Kaliuzhna, Iu., Ihnatenko, М. (2021). Sorption purification of wastewater from organic dyes using granulated blast-furnace slag. ChemChemTech, 64(6), 89–94. https://doi.org/10.6060/ivkkt.20216406.6302.
[8]Datsenko, V.V., Khobotova, E.B., Belichenko E.A., Vankevich A.V. (2021). Multifunctionality of a composite material based on copper-zinc ferrite. J. of Chem. and Techn., 29(4), 476–484. https://doi.org/10.15421/jchemtech.v29i4.240173.
[9]Pashayan, А. А., Karmanov, D. А. (2018). Recycling of Electroplating Wastes without Formation of Galvanic Sludges. Ecology and Industry of Russia, 22(12), 19–21. https://doi.org/10.18412/1816-0395-2018-12-19-21.
[10]Makarchuk, O., Dontsova, T., Perekos, A., Skoblic, A., Svystunov, Y. (2017). Magnetic Mineral Nanocomposite Sorbents for Wasterwater Treatment. J. of Nanomaterials, 2017:7. ID 8570598. https://doi.org/10.1155/2017/8579598.
[11]Yang, Z., Li, Y., Zhang, X., Cui, X., He, S., Liang, H., Ding, A. (2020). Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for de-grading antibiotic norfloxacin through activating perox-ymonosulfate. Chem. Eng. J., 384 (123319). https://doi.org/10.1016/j.cej.2019.123319.
[12]Zhu, Z., Ma, C., Yu, K., Lu, Z., Liu, Z., Yan, Y., Tang, X., Huo, P. (2020). Fabrication of CoFe2O4-modified and HNTs-sup-ported g-C3N4 heterojunction photocatalysts for enhancing MBT degradation activity under visible light. J. Mater. Sci., 55(10), 4358–4371. https://doi.org/10.1007/s10853-019-04170-8.
[13]Bagherzadeh, S.B., Kazemeini, M., Mahmoodi, N.M. (2020). A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investiga-tions. J. Molec. Liq., 301: 112427. https://doi.org/10.1016/j.molliq.2019.112427.
[14]Jafarinejad, S. (2017). Treatment of Oily Wastewater. Petroleum Waste Treatment and Pollution Control, 185–267. https://doi.org/10.1016/b978-0-12-809243-9.00006-7.
[15]Zoria, O., Ternovtsev, O., Zoria, D., Walery, M. (2019). Advanced resource-saving copper wastewater treatment by ferritization. J. Ways to Improve Construction Efficiency, 41, 148–162. https://doi.org/10.32347/2707-501x.2019.41.148-162.
[16]Kanokporn Supong, Parnuwat Usapein, Pirapan Polburee. (2019). Analysis of Environmental Performances of Ferritization Method for the Treatment of Copper-ammonia Wastewater under the Optimized Condition via RSM. Applied Environmental Research, 14, 42–56. https://doi.org/10.35762/aer.2019.41.3.4.
[17]JCPDS PDF-1 File. (1994). Intern. Committee for Diffraction Data, release 1994 PA, USA. https://www.icdd.com.
[18] Rodriguez-Carvajal, J., Roisnel, T. (1998). FullProf. 98 and WinPLOTR: New Windows 95 / NT Applications for Diffraction. Commission for Powder Diffraction, Intern. Union of Crystallography, Newsletter N 20.
[19]Patent UA 128532. Method for obtaining nanosized copper-zinc ferrites with superparamagnetic, catalyst and oxidant properties / V.V. Datsenko, E.B. Khobotova, V.I. Larin – 08.07.2024, Bull. N 32/2024.
[20]Patent UA 151030. Method for obtaining a ferrite composite material with sorbent and photocatalyst properties / V.V. Datsenko, E.B. Khobotova, O.I. Vankevich – 05.25.2022, Bull. N 21/2022.
[21]Patent UA 149385. Method for obtaining ferrites by purifying waste copper-zinc sulfate solutions / E.B. Khobotova, V.V. Datsenko, O.I. Vankevich – 11.10.2021, Bull. N 45/2021.
[22]Patent UA 151270. Method for synthesizing multi-metallic ferrite with sorption properties / E.B. Khobotova, V.V. Datsenko, V.I. Larin – 06.29.2022, Bull. N 26/2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.