Toward a Theoretically Grounded Framework for Digital Epidemiological Enquiry: Integrating Behavioral Models, Information Diffusion, and AI-Driven Infoveillance Using a COVID-19 Vaccine Case Study
Main Article Content
Article Details
References
[1]Eysenbach, G. (2009). Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods. Journal of Medical Internet Research, 11(1), Article e11. https://doi.org/10.2196/jmir.1023.
[2]Salathé, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C., ... & Brownstein, J. S. (2012). Digital epidemiology. PLOS Computational Biology, 8(7), Article e1002616. https://doi.org/10.1371/journal.pcbi.1002616.
[3]Eysenbach, G. (2020). How to fight an infodemic: The four pillars of infodemic management. Journal of Medical Internet Research, 22(6), Article e21820. https://doi.org/10.2196/21820.
[4]Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C. M., Schmidt, A. L., Zollo, F., & Scala, A. (2020). The COVID-19 social media infodemic. Scientific Reports, 10, Article 16598. https://doi.org/10.1038/s41598-020-73510-4.
[5]Hussain, S., Tahir, M., Hussain, H., Sheikh, T., Dashtipour, A., & Naseem, T. M. (2021). Artificial intelligence–enabled analysis of public attitudes toward COVID-19 vaccines in the United Kingdom and the United States. Journal of Medical Internet Research, 23(4), Article e26627. https://doi.org/10.2196/26627.
[6]Kashim, I. A. (2025). A review of public perceptions of COVID-19 vaccination on social media using sentiment analysis [Doctoral dissertation, Texila American University / Central University of Nicaragua].
[7]Rosenstock, I. M. (1974). Historical origins of the Health Belief Model. Health Education Monographs, 2(4), 328–335. https://doi.org/10.1177/109019817400200403.
[8]Glanz, K., Rimer, B. K., & Viswanath, K. (2015). Health behavior: Theory, research, and practice (5th ed.). Jossey-Bass.
[9]Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
[10]Hutto, C. J., & Gilbert, E. (2014). VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 216-225.
[11]Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
[12]Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96–104. https://doi.org/10.1145/2818717.
[13]Hancock, J. T., Naaman, A., & Levy, M. (2020). AI-mediated communication. Proceedings of the National Academy of Sciences, 117(51), 31794–31802. https://doi.org/10.1073/pnas.2013275117.
[14]Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094–1096. https://doi.org/10.1126/science.aao2998.
[15]Floridi, L., & Cowls, J. (2020). A unified framework of five principles for AI in society. Harvard Data Science Review, 2(1). https://doi.org/10.1162/99608f92.8cd550d1.

This work is licensed under a Creative Commons Attribution 4.0 International License.