Investigation of Thermal Stress Performance of Si₃N₄ Discs for Aerospace Applications
Main Article Content
Article Details
References
[1] Afsar, A. M., Go, J., & Song, J. I. (2010). A mathematical analysis of thermoelastic characteristics of a rotating circular disk with an FGM coating at the outer surface. Advanced Composite Materials, 19(3), 269–288. https://doi.org/10.1163/092430410X490482
[2] Eldeeb, A. M., Shabana, Y. M., & Elsawaf, A. (2021). Influences of angular deceleration on the thermoelastoplastic behaviors of nonuniform thickness multilayer FGM discs. Composite Structures, 258, 113092. https://doi.org/10.1016/j.compstruct.2020.113092
[3] Tokovyy, Y., & Ma, C.-C. (2021). The direct integration method for elastic analysis of nonhomogeneous solids. Cambridge Scholars Publishing.
[4] Yıldırım, V. (2018). Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar orthotropic rotating discs. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(1), 1–21. https://doi.org/10.1007/s40430-017-0987-6
[5] Zhao, M. H., Dang, H. Y., Fan, C. Y., & Chen, Z. T. (2003). Analysis of an arbitrarily shaped interface cracks in a three dimensional isotropic thermoelastic bi-material. Part 1: Theoretical solution. International Journal of Solids and Structures, 40(8), 929–952. https://doi.org/10.1016/S0020-7683(02)00571-4
[6] Dai, T., Li, B., Tao, C., He, Z., & Huang, J. (2022). Thermo-mechanical analysis of a multilayer hollow cylindrical thermal protection structure with functionally graded ultrahigh-temperature ceramic to be heat resistant layer. Aerospace Science and Technology, 124, 107532. https://doi.org/10.1016/j.ast.2022.107532
[7] Iqbal, M. D., Birk, C., Ooi, E. T., Pramod, L. N., Natarajan, S., Gravenkamp, H., & Song, C. (2022). Thermoelastic fracture analysis of functionally graded materials using the scaled boundary finite element method. Engineering Fracture Mechanics, 264, 108305. https://doi.org/10.1016/j.engfracmech.2022.108305
[8] Riley, F. L. (2009). Silicon nitride and related materials. Journal of the American Ceramic Society, 83(2), 245–265. https://doi.org/10.1111/j.1551-2916.1999.tb20092.x
[9] Chen, L., & Wang, H. (2012). Advanced ceramic materials for aerospace applications. Journal of Aerospace Engineering, 25(3), 145–158. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000135
[10] Zeng, P. (2015). Thermal shock behavior of ceramics: Testing and analysis. Ceramics International, 41(9), 10535–10542. https://doi.org/10.1016/j.ceramint.2015.04.024
[11] Timoshenko, S., & Goodier, J. N. (1970). Theory of elasticity. McGraw-Hill.
[12] AZoM. (2025). Sintered silicon nitride (Si₃N₄) – Properties. AZoM.com. Retrieved September 22, 2025, from https://www.azom.com/properties.aspx?ArticleID=260
[13] Precision Ceramics. (2025). Silicon nitride (Si₃N₄) ceramic: Properties & applications. Precision Ceramics UK. Retrieved September 22, 2025, from https://precision-ceramics.com/materials/silicon-nitride/
[14] Imetra, Inc. (2025). Silicon nitride material properties. Retrieved September 22, 2025, from https://www.imetra.com/silicon-nitride-material-properties/

This work is licensed under a Creative Commons Attribution 4.0 International License.