Artificial Intelligence-Based Prediction of Thermo-Elastic Behavior in Inconel 718 / Ti-6Al-4V Rotating Disks
Main Article Content
Article Details
References
[1]Gibson, R. F. (2016). Principles of composite material mechanics (4th ed.). CRC Press.
https://doi.org/10.1201/b19626
[2]Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). Oxford University Press.
[3]Sharma, J. N., Sharma, D., & Sharma, P. (2018). Thermoelastic analysis of rotating functionally graded disks with variable thickness. Composite Structures, 202, 421–432. https://doi.org/10.1016/j.compstruct.2018.04.067
[4]Eslami, M. R. (2014). Thermal stresses in functionally graded materials. Elsevier.
[5]Çallıoğlu, H., & Sayer, M. (2019). Thermoelastic analysis of functionally graded rotating disks using an integral equation approach. Journal of Thermal Stresses, 42(6), 705–724. https://doi.org/10.1080/01495739.2019.1575632
[6]Zenkour, A. M., & Sobhy, M. (2015). Thermoelastic bending analysis of rotating functionally graded disks with variable thickness. International Journal of Mechanical Sciences, 95, 210–220. https://doi.org/10.1016/j.ijmecsci.2015.03.010
[7]Gay, D., Hoa, S. V., & Tsai, S. W. (2014). Composite materials: Design and applications (4th ed.). CRC Press.
[8]Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74–94.https://doi.org/10.1016/j.compositesb.2014.12.034
[9]Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166–180. https://doi.org/10.1016/j.compositesb.2014.12.011.
[10]Chibani, S., & Coudert, F.-X. (2020). Machine learning approaches for the prediction of materials properties. APL Materials, 8(8), 080701. https://doi.org/10.1063/5.0018384
[11]Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Jamalipour Soufi, G. (2021). Deep learning–based methods for prediction and modeling: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12), 4036–4058. https://doi.org/10.1109/TPAMI.2021.3051879
[12]Timoshenko, S., & Goodier, J. N. (1970). Theory of elasticity. McGraw-Hill.
[13]Lütjering, G., & Williams, J. C. (2007). Titanium (2nd ed.). Springer.https://doi.org/10.1007/978-3-540-73036-1
[14]Reed, R. C. (2006). The superalloys: Fundamentals and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511541285
[15]Gay, D., Hoa, S. V., & Tsai, S. W. (2014). Composite materials: Design and applications (4th ed.). CRC Press. https://doi.org/10.1201/b17437
[16]Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74–94. https://doi.org/10.1016/j.compositesb.2014.12.034
[17]Chibani, S., & Coudert, F.-X. (2020). Machine learning approaches for the prediction of materials properties. APL Materials, 8(8), 080701. https://doi.org/10.1063/5.0018384
[18]Zhang, L., Yang, Y., & Gao, Z. (2016). A survey on deep learning for big data. Information Fusion, 42, 146–157. https://doi.org/10.1016/j.inffus.2017.10.006
[19]Zhang, Z., Sabuncuoglu, B., & Kara, S. (2021). Machine learning-based prediction of thermoelastic behavior in composite structures. Composite Structures, 261, 113293. https://doi.org/10.1016/j.compstruct.2021.113293
[20]Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. https://doi.org/10.1007/978-0-387-45528-0
[21]Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https://www.deeplearningbook.org

This work is licensed under a Creative Commons Attribution 4.0 International License.