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methodology for driving enduring operational excellence. This study examines
the implementation of Lean Six Sigma (LSS) in machining operations, addressing
key challenges such as (1) the lack of a unified, adaptable LSS framework
tailored to machining processes, (2) limited empirical validation in industrial
contexts, and (3) insufficient assessment of critical performance metrics,
including quality, productivity, and customer satisfaction. To address these gaps,
a structured, integrated LSS framework is proposed, combining Lean’s waste-
elimination principles with Six Sigma’s data-driven methodologies for defect
reduction and process variation control. The framework leverages robust
measurement systems, statistical process analysis, and machining parameter
optimization, providing a systematic, evidence-based approach to identify,
prioritize, and implement process improvements.The framework was validated
through a three-month case study in a leading spare parts manufacturing company
in Egypt. Implementation resulted in notable improvements: product quality
increased from 85% to 89%, sigma level rose from 2.5 to 2.7, processing time
decreased from 645 to 370 hours/ton, overall equipment effectiveness (OEE)
improved from 75% to 81%, value-added activities increased from 50% to 54%,
and customer satisfaction rose from 87% to 89%. These results confirm the
framework’s effectiveness in enhancing process stability, operational efficiency,
and product performance, providing actionable guidance for engineers, managers,
and researchers seeking to institutionalize continuous improvement in machining
operations.Ultimately, the proposed LSS framework serves as a comprehensive
reference for production managers, organizational leaders, and researchers across
diverse industrial sectors, offering structured and evidence-based guidance before
initiating continuous process improvement initiatives.
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1. Introduction

In today’s competitive manufacturing environment, organizations must deliver high-quality products
efficiently while remaining agile in response to changing market demands. Achieving this requires systematic
waste elimination, reduction of process variability, and the institutionalization of continuous improvement
across production systems. Lean Six Sigma (LSS), which integrates Lean’s waste-reduction principles with
Six Sigma’s data-driven methodologies, has emerged as a robust approach to enhance process performance,
operational efficiency, and product quality

Over the past two decades, LSS has been applied across various industries, including automotive,
aerospace, electronics, and healthcare, yielding measurable improvements in productivity, quality, and cost
efficiency. Lean emphasizes eliminating non-value-added activities, streamlining workflows, and optimizing
resources, while Six Sigma applies statistical rigor to quantify, control, and reduce process variation.
Together, LSS enables organizations to achieve both efficiency and quality objectives, align improvement
initiatives with strategic goals, and enhance workforce engagement and customer satisfaction

The DMAIC (Define—Measure—Analyze—Improve—Control) framework underpins LSS, providing a
structured methodology for systematic improvement. Lean tools—including 5S, value stream mapping, Just-
in-Time (JIT), Kaizen, and Total Productive Maintenance (TPM)—enhance workflow efficiency and
standardization, while Six Sigma techniques—such as design of experiments (DOE), statistical process
control, and process capability analysis—minimize defects and variability. Collectively, these tools optimize
resources, improve productivity, and increase organizational agility

Machining processes are critical in modern manufacturing, influencing product accuracy, surface quality,
and production costs. They involve complex interactions among cutting parameters, tool wear, temperature,
vibration, and material properties, where minor variations can lead to defects or premature tool failure.
Traditional improvement tools provide insights but often fail to capture complex interactions. Integrating
LSS with predictive analytics offers a systematic approach to optimize machining operations, enhance
process stability, and sustain improvements

Despite its potential, LSS adoption in machining faces challenges, including the absence of a unified,
adaptable framework, limited empirical validation, insufficient evaluation of key performance metrics (e.g.,
quality, productivity, customer satisfaction), and underutilization of real-time data for predictive decision-
making

This study addresses these gaps by proposing an integrated LSS framework for machining operations,
validated through a case study in a spare parts manufacturing company in Egypt. Results demonstrate
significant improvements in product quality, sigma level, overall equipment effectiveness (OEE), and
customer satisfaction. The research contributes by reviewing the current state of LSS, developing a context-
specific framework for machining optimization, providing empirical evidence of its effectiveness, and
offering practical guidance for engineers, managers, and researchers seeking to institutionalize continuous
improvement.

The remainder of the paper is organized as follows: Section 2 reviews the theoretical background and
literature on Lean Six Sigma. Section 3 identifies challenges and research gaps. Section 4 presents the
research methodology and proposed framework. Section 5 details the case study and discusses results.
Section 6 concludes and outlines directions for future research.

2. Literature Review and Conceptual Background
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This study presents a systematic literature review (SLR) of LSS applications in machining processes,
covering research published in specialized journals from 2015 to 2025. The review identifies critical trends,
methodological approaches, success factors, and implementation gaps. Targeted keywords included lean, six
sigma, lean six sigma, lean sigma, total quality management, continuous improvement, manufacturing,
production, and case study, with the search limited to English-language publications [7]. By synthesizing
evidence from both academic literature and industrial case studies, the review provides insights into how LSS
has been applied to optimize machining operations and achieve operational excellence.

Lean Six Sigma (LSS), which integrates Lean’s waste-elimination principles with Six Sigma’s data-driven
methodologies for variation and defect control, has emerged as a key approach for improving operational
performance in manufacturing. Lean emphasizes process flow, value creation, and the elimination of non-
value-added activities, while Six Sigma focuses on reducing variation, enhancing process capability, and
achieving consistent quality. Together, LSS provides a systematic methodology that enhances efficiency,
reduces costs, and improves product quality

Gomaa (2023) demonstrates that LSS improves product quality, increases sigma levels, reduces non-
value-added activities, enhances productivity, lowers production costs, and improves customer satisfaction. A
40-step LSS framework tailored for manufacturing integrates tools such as process mapping, KPIs, OEE,
seven quality control tools, process time analysis, value stream mapping, kaizen, 5S, brainstorming, and
standard work within DMAIC phases, offering a structured roadmap for continuous improvement. LSS
effectiveness depends on baseline performance, project scope, team expertise, and implementation strategy.
By combining Lean for waste elimination and process optimization with Six Sigma for defect reduction and
variation control, LSS provides a systematic and evidence-based approach to improving operational
performance.

Empirical studies highlight LSS’s versatility across industries. Irfan et al. (2025) [9] applied TPM and 5S
in a cement plant, improving Overall Equipment Effectiveness (OEE) from 65.6% to 68%. Widiwati et al.
(2025) applied DMAIC to mooncake production, targeting five types of waste—transportation, waiting,
overprocessing, defects, and inventory—improving production efficiency from 66.19% to 70.98% while
reducing cycle time and lost products. Dara et al. (2024) showed that Lean tools such as Just-in-Time
(JIT), Continuous Improvement (CI), and Total Quality Management (TQM) significantly reduce non-value-
added activities in construction projects (B = 0.654). Gomaa (2024a) implemented an LSS-DMAIC
framework in a spare parts manufacturer, improving TEEP (58.4% — 67.6%), OEE (64.5% — 75.7%),
sigma level (2.36 — 2.68), and process capability (0.38 — 1.01).

Additional studies further demonstrate LSS effectiveness. Mittal et al. (2023) reduced rubber weather
strip rejections, improving sigma from 3.9 to 4.45. Kulkarni et al. (2023) optimized bearing production
using DMAIC and Taguchi robust design, increasing Cp from 1.17 to 2.78 and Cpk from 0.976 to 2.23.
Thakur et al. (2023) streamlined laboratory QC processes, reducing material and calibrator costs by 26% and
43%, respectively. Condé¢ et al. (2023) reduced defects in car parts, increasing sigma from 3.4 to 4.0.
Saryatmo et al. (2023) improved brake lining efficiency from 26.85% to 35.33% and sigma from 4.91 to 5.12.
Daniyan et al. (2022) enhanced railcar bogie assembly efficiency by 46.8%, reduced lead time by 27.9%,

and minimized non-value-added time by 71.9%. Adeodu et al. (2021) improved process cycle efficiency
and value-added activities in paper production. Jayanth et al. (2020) increased productivity and quality
in electronics manufacturing by 23%. Setyabudhi and Sipahutar (2019) reduced coffee maker defects

from 5.99% (sigma 3.1) by addressing operator errors and machine parameters. Adikorley et al. (2017)
demonstrated LSS success in textiles through changeover reduction and contamination control.

Collectively, these studies confirm that LSS delivers measurable operational improvements, though
outcomes depend on baseline performance, project scope, implementation strategy, and team expertise.
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Maximum benefits occur when both process efficiency and defect reduction are addressed concurrently.
Despite its proven effectiveness, LSS applications in machining remain limited. Key gaps include the
absence of context-specific, integrated frameworks, limited empirical validation, and insufficient evaluation
of performance indicators such as first-pass yield, cycle time, OEE, and customer satisfaction. Furthermore,
many frameworks underutilize digital technologies and real-time analytics, constraining predictive and
proactive decision-making.

To address these gaps, this study proposes a structured, adaptable, and data-driven LSS framework for
machining operations. The framework systematically reduces variation, eliminates waste, improves process
stability, and leverages real-time data to support continuous improvement. By bridging theoretical insights
and practical applications, it contributes to enhanced process capability, product quality, operational
resilience, and long-term competitiveness in machining operations.

3. Challenges and Research Gaps

Lean Six Sigma (LSS) is widely recognized for enhancing operational efficiency, reducing waste, and
improving quality. However, its effective application in machining operations remains limited due to the
inherent complexity and precision requirements of these processes. Machining involves interdependent
operations and is highly sensitive to cutting parameters, tool wear, material properties, and machine dynamics.
While integrating Lean’s waste-elimination focus with Six Sigma’s data-driven problem-solving can stabilize
processes and improve predictability, several critical challenges persist 2) .

1) Lack of a Unified, Adaptable Framework: Most studies treat Lean and Six Sigma separately, providing
few integrated frameworks tailored to machining complexities, which often leads to fragmented
improvements and inconsistent results.

2) Limited Integration and Empirical Validation: Lean and Six Sigma tools are frequently applied in
isolation, reducing their synergistic potential. Empirical evidence from real-world machining environments is
scarce, and comprehensive evaluation of key performance indicators—such as first-pass yield, cycle time,
overall equipment effectiveness (OEE), and customer satisfaction—is limited.

3) Inadequate Performance Measurement: Few studies systematically assess LSS’s impact across multiple
operational metrics, and the absence of standardized benchmarks limits comparability and practical
applicability.

4) Skills and Workforce Readiness: Effective LSS implementation requires personnel skilled in both Lean
and Six Sigma methodologies and knowledgeable about machining operations. Lack of trained staff can
hinder adoption and compromise the sustainability of improvements.

5) Organizational Culture and Change Management: Resistance to change, insufficient leadership support,
and limited cross-functional collaboration often impede LSS initiatives, reducing the likelihood of sustained
performance gains.

6) Cost and Resource Constraints: Implementing integrated LSS programs may require substantial
investment in training, data infrastructure, and process redesign, which can be challenging for resource-
limited organizations.

7) Sustainability and Environmental Considerations: Traditional LSS primarily focuses on efficiency and
quality, often overlooking environmental objectives such as reducing energy consumption, tool wear, and
material waste.

8) Scalability and Adaptability: Many LSS applications are process-specific or small-scale, with limited
guidance for scaling improvements across machines, production lines, or facilities while maintaining
effectiveness.
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9) Underutilization of Digital Technologies and Data Analytics: Modern machining systems generate
extensive real-time data, yet most LSS frameworks fail to fully exploit this information for predictive and
proactive decision-making, constraining optimization in dynamic production settings.

10) Integration with Advanced Manufacturing Technologies: Although modern machining increasingly
relies on CNC automation, [oT sensors, and Industry 4.0 systems, most LSS frameworks are not fully aligned
with these technologies, limiting their capacity for real-time optimization.

Addressing these gaps requires a validated, context-specific LSS framework that integrates Lean and Six
Sigma, accommodates machining-specific complexities, leverages real-time data and advanced technologies,
fosters workforce readiness and cultural alignment, and incorporates sustainability objectives. The framework
proposed in this study aims to bridge these gaps, delivering both theoretical rigor and practical relevance
while enabling measurable improvements across key performance indicators in modern machining operations.

4. Research Methodology for Machining Process Optimization

The integration of Lean Six Sigma (LSS) principles with data-driven manufacturing provides a strategic
and systematic foundation for achieving operational excellence. As machining systems evolve toward higher
levels of complexity, automation, and conventional improvement methods are insufficient to meet the
demands of precision, efficiency, and reliability. The proposed methodology combines the structured
problem-solving logic of LSS with advanced analytics, reliability engineering, and continuous improvement
techniques, enabling manufacturers to optimize machining processes systematically. Its primary objectives
are to minimize process variation, improve process capability, enhance product quality, and increase
equipment reliability through evidence-based decision-making,.

Table 1 provides a comprehensive overview of key Lean Six Sigma (LSS) tools used to optimize
machining process performance. These tools offer a systematic, data-driven framework for identifying
inefficiencies, minimizing process variability, and enhancing product quality, reliability, and productivity

. For clarity and practical application, the tools are organized into five functional categories,
reflecting the progression from strategic alignment and process analysis to optimization, sustainment, and
continuous improvement.

1) Group A — Strategic Alignment and Project Prioritization ensures that improvement initiatives are
strategically focused and resource-efficient. Tools such as the Project Selection Matrix and Impact—Effort
Matrix help prioritize high-impact projects, while SWOT Analysis and Hoshin Kanri align improvement
objectives with organizational strategy. Key Performance Indicators (KPIs) establish measurable targets for
performance monitoring and control.

2) Group B — Process Definition, Mapping, and Analysis provides a clear understanding of process flow,
behavior, and variation. The DMAIC framework guides structured improvement, while SIPOC diagrams,
Process Mapping, and CTQ Analysis define boundaries and critical quality requirements. Value Stream
Mapping (VSM) identifies waste and inefficiencies, and SPC, Process Capability (Cp, Cpk), and Gage R&R
ensure process control, stability, and data reliability.

3) Group C — Process Optimization and Quality Enhancement aims to achieve high precision, robustness,
and defect prevention. Design of Experiments (DOE) and Response Surface Methodology (RSM) determine
optimal process parameters, while the Taguchi Method enhances robustness by reducing sensitivity to
variation. Failure Mode and Effects Analysis (FMEA) anticipates potential failures, and Root Cause Analysis
(RCA) supported by Cause-and-Effect Diagrams identifies and eliminates the true sources of process defects.

4) Group D — Reliability, Equipment, and Maintenance Excellence strengthens equipment performance
and operational reliability. Total Productive Maintenance (TPM) integrates preventive, predictive, and
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autonomous maintenance to maximize uptime. Overall Equipment Effectiveness (OEE) measures losses
across availability, performance, and quality dimensions, and Reliability-Centered Maintenance (RCM)
prioritizes maintenance strategies based on criticality and risk.

5) Group E — Standardization, Sustainment, and Continuous Improvement focuses on stabilizing gains and
fostering a culture of excellence. Standardized Work documents best practices for repeatability and safety,
and 5S methodology improves workplace organization and discipline. Benchmarking identifies best practices
and performance gaps, while Control Plans and Visual Management sustain process gains. Finally, Kaizen
reinforces continuous improvement, collaboration, and learning across all levels.

Overall, the framework illustrates how the structured application of Lean Six Sigma (LSS) tools integrates
strategic alignment, process optimization, and cultural transformation to improve machining performance,
reliability, and competitiveness. By systematically reducing variability, optimizing process parameters,
preventing failures, and enhancing equipment efficiency, these tools deliver measurable improvements in
productivity, process capability, and operational reliability, supporting the shift toward adaptive, intelligent,
and continuously improving manufacturing systems. The DMAIC framework underpins this approach by
linking process analysis, root cause identification, solution implementation, and performance monitoring with
strategic objectives, ensuring that improvements are evidence-based, sustainable, and continuously refined.

Table 2 provides a detailed overview of this framework, outlining objectives, key tools, and their practical
applications in machining process optimization

1) Define Phase: Process Definition and Mapping: In the Define phase, the machining process is clearly
delineated to establish its scope, objectives, and boundaries. This ensures alignment with business strategy
and customer requirements. Tools such as DMAIC, SIPOC (Suppliers, Inputs, Process, Outputs, Customers),
Value Stream Mapping (VSM), Key Performance Indicators (KPIs), and SWOT Analysis are employed to
visualize process flows, map value streams, and identify high-priority improvement areas. This phase
establishes performance baselines, aligns stakeholders, and provides a structured roadmap for subsequent
activities. In digitally connected environments, process mapping can leverage real-time sensor data and
digital twins, offering deeper insights into process dynamics.

2) Measure Phase: Quantifying Process Performance: The Measure phase focuses on accurate data
collection and performance evaluation, establishing a baseline of current process performance and assessing
variability in critical parameters. Techniques such as Data Collection Plans, Statistical Process Control (SPC),
process capability analysis (Cp/Cpk), and Gage Repeatability and Reproducibility (Gage R&R) ensure
reliable and precise measurement. Integration of real-time data from CNC machines, IoT sensors, and smart
monitoring systems enhances accuracy and supports predictive analysis. By quantifying performance
systematically, manufacturers can identify deviations, prioritize improvement opportunities, and guide data-
driven decision-making in subsequent phases.

3) Analyze Phase: Root Cause Identification and Process Optimization: The Analyze phase emphasizes
identifying, validating, and prioritizing root causes of defects, variability, and inefficiencies. Tools such as
Design of Experiments (DOE), Taguchi Method, Failure Mode and Effects Analysis (FMEA), and Root
Cause Analysis (RCA) determine critical factors affecting performance, clarify parameter interactions, and
quantify their impact on overall process outcomes. Statistical and experimental analyses reveal systemic
issues and provide actionable insights for robust process improvement. Advanced techniques, including
predictive analytics and machine learning, can further enhance root cause identification and process
optimization using historical and real-time data.

4) Improve Phase: Solution Development and Implementation: The Improve phase is dedicated to
developing and implementing solutions that enhance process performance, product quality, and equipment
reliability. DOE and Taguchi Method identify optimal machining parameters, while Total Productive
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Maintenance (TPM) and Reliability-Centered Maintenance (RCM) improve equipment availability and
minimize downtime. Interventions reduce variability, prevent defects, and increase operational efficiency.
Solutions are validated through pilot testing, iterative adjustments, and continuous performance monitoring,
ensuring practicality, effectiveness, and sustainability. Integration of digital twin simulations allows virtual
testing of parameter adjustments prior to physical implementation, reducing trial-and-error costs and
improving confidence in results.

5) Control Phase: Sustaining Improvements: The Control phase ensures that improvements are sustained
and processes remain stable over time. Tools such as Control Plans, Standardized Work, 5S, Benchmarking,
KPIs, and SPC monitor performance, institutionalize best practices, and reinforce a culture of continuous
improvement. Real-time dashboards and predictive analytics enable ongoing monitoring of key performance
indicators, allowing rapid detection of deviations and continuous alignment with operational targets.

In conclusion, this methodology bridges Lean Six Sigma principles with data-driven manufacturing,
offering a comprehensive and systematic approach to machining process optimization. By integrating
analytical, quality, and maintenance-focused tools within the DMAIC framework, manufacturers can achieve
measurable improvements in process capability, product quality, and equipment reliability.

Table 1. Lean Six Sigma Tools for Machining Process Performance Optimization.

Main Goals # Main Objectives ~ Main LSS Tools Description
Prlorltlze Propct Selection Evaluates opportunities based on impact, feasibility,
I improvement Matrix / Impact- and resources to focus on high-value initiatives
projects Effort Matrix & ’
Align
A. .Strateglc ¥mproyemer{t SWOT Analysis/  Assesses internal and external factors to ensure
Alignment and 2 initiatives with . 4 ) . L
; . Hoshin Kanri alignment with organizational goals.
Project strategic
Prioritization objectives
Define and
3 monitor Key Performance  Establishes measurable indicators to track quality,
performance Indicators (KPIs)  productivity, and overall process performance.
metrics
Implement a
structured DMAIC Guides systematic, data-driven improvement using
4 .
improvement Framework Define—Measure—Analyze—Improve—Control.
methodology
Define process SIPOC Dlagrgm / Maps suppliers, inputs, processes, outputs, and
Process Mapping / . . .
5 scope, flow, and customers to clarify boundaries and critical-to-
CTQ factors VoCand CTQ quality parameters
Analysis '
. Value Stream . . . . .
Identify value Mapping (VSM) / Visualizes material and information flows to
B. Prqqess 6 streams and Taklip& %ea d Time uncover inefficiencies, balance workloads, and
Deﬁnl.tlon, eliminate waste ) remove non-value-added activities.
Mapping, and Analysis
Analysis Monitor and Uses control charts and statistical tools to detect and

Statistical Process

7 control process Control (SPC)

variation

minimize variation, ensuring consistent
performance.

Assess process

8 capability and Process Capability Measures process capability relative to specification

Analysis (Cp, Cpk) limits to verify quality consistency.

compliance
. Gage Repeatability
9 le{;g?::men ¢ and Evaluates measurement variation to ensure
system reliability Reproducibility precision, repeatability, and data reliability.
(Gage R&R)
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Main Goals # Main Objectives ~ Main LSS Tools Description
Design of
Optimize Experiments
10 machining (DOE) / Response  Conducts structured experiments to determine
parameters and ~ Surface optimal conditions for quality and efficiency.
performance Methodology
(RSM)
C. Process .- . e
SUTESS Enhance process . Improves process stability by reducing sensitivity to
gptllr.rtnzatlon and 1 robustness Taguchi Method uncontrolled variation and external noise.
uality . .
Enhancement Id?ptlfy and . Failure Mode a.nd Detects, prioritizes, and mitigates potential failures
12 mitigate potential Effects Analysis to improve reliability and safet
failure modes (FMEA) p Y Y
Determine and Root Cause
o Analysis (RCA)/  Identifies and resolves underlying causes of defects
13 eliminate root )
causes Cause-and-Effect  and process issues.
Diagram / 5 Whys
Imp.rove Total Productive . -
equipment ) Integrates preventive, predictive, and autonomous
14 1 Maintenance . P o h .
reliability and maintenance to maximize availability and efficiency.
. (TPM)
uptime
D. Reliability, Measure and Overall Equipment . o
. enhance . Quantifies losses across availability, performance,
Equipment, and 15 equipment Effectiveness and quality to target improvements
Maintenance qupm (OEE) quality & p ’
utilization
Excellence
Develop Reliability-
Y Centered Prioritizes maintenance tasks based on equipment
16 focused . e . .
. Maintenance criticality, function, and risk.
maintenance
. (RCM)
strategies
Standardize and Documents best practices to ensure consistenc
17 stabilize Standardized Work pract Y,
. safety, and repeatability.
operations
Maintain
workplace Promotes efficiency, safety, and visual order through
18 organization and 58S Methodology Sort, Set in Order, Shine, Standardize, and Sustain.
E. Standardization, discipline
Sustqmment, and Benchmark and . Compares performance with industry leaders to
Continuous 19 adopt best Benchmarking ) . . . .
. identify gaps and implement superior practices.
Improvement practices
Sustain and antrol Plan/ Establishes visual controls and monitoring systems
20 control process  Visual L . . .
) to maintain gains and enable proactive corrections.
improvements Management
Foster a culture Kaizen / PDCA Embpds 1terat1ve’ learnlng, employe.e engagement,
21 of continuous Cvele and incremental innovation to sustain operational
improvement y excellence.
Table 2. DMAIC Framework for Machining Process Performance Optimization.
Phase Purpose Key Tools & Techniques Machining Performance Deliverables
Establish Clearly defines machining performance

improvement scope,
machining challenges,
and stakeholder

Define

priorities

Project Selection, Project Charter,
VoC, CTQ, Process Mapping,
SIPOC, KPIs, and SWOT.
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Phase Purpose Key Tools & Techniques Machining Performance Deliverables

Provides validated and repeatable
measurements of dimensional accuracy,
surface integrity, and tool wear behavior;
establishes capability benchmarks and
variation profiles.

MSA/Gage R&R, Data Collection
Plan, Time Study, Control Charts,
Process Capability (Cp/Cpk), and
sigma level.

Determine baseline
Measure process capability
with reliable data

DOE Screening, Regression Identifies critical machining factors
Verify root causes of ~ Modeling, Pareto Analysis, Waste (cutting speed, feed rate, depth of cut,
Analyze variation and Analysis, Brainstorming, RCA, 5 lubrication/cooling, tool geometry) that
productivity losses Whys, and Cause-and-Effect drive non-conformities, downtime, chatter,
Diagram. and thermal deviations.
Optimize process Improvement Plan, Brainstorming, Implements optimized cutting regimes .and
conditions and Response—S.urface. DOE, Taguchi reha?bl'hty measures tha.t en.h.ance tool life,
Improve eliminate dominant Robust Optimization, TPM/RCM, precision, machine availability,
Poka-Yoke, and Condition-Based & throughput, and energy efficiency while
causes Predictive Maintenance. reducing scrap and rework.
Control Plan, Control Charts,
Sustain enhanced Standardized Work, Standard Stabilizes machining performance,
capability and ensure ~ Operating Procedure (SOP), Visual prevents regression, ensures consistent
Control . .
long-term process Management, Kaizen Events, equipment health, and promotes
stability Brainstorming, KPI Dashboards, and  continuous improvement in operations.
Performance Monitoring Systems.
5. Case Study

To validate the proposed Lean Six Sigma (LSS) framework, a comprehensive case study was conducted in
a leading Egyptian spare parts manufacturing company, a key supplier of precision-engineered components.
The study aimed to reduce product defects, eliminate process waste, and minimize non-value-added time in
machining operations, thereby enhancing productivity, quality, and operational efficiency. The focus was on
ENS steel components, critical high-precision items within the production line. The LSS-DMAIC (Define,
Measure, Analyze, Improve, Control) methodology was systematically applied to optimize process
performance, improve product quality, and embed continuous improvement practices (Gomaa, 2025)

In the Define Phase, the project scope, objectives, and key performance indicators (KPIs) were clearly
established. Critical machining processes were mapped, and a detailed project charter was developed to target
improvements in first-pass yield, cycle time, and overall equipment effectiveness (OEE), ensuring alignment
with strategic operational goals. During the Measure Phase, comprehensive data on defect rates, cycle times,
machine utilization, and process performance were collected. Process mapping and Value Stream Analysis
(VSA) identified bottlenecks, waste, and non-value-added activities, providing baseline metrics to guide
targeted improvement efforts. The Analyze Phase used statistical analyses, Pareto charts, and cause-and-
effect diagrams to identify root causes of defects and process variability. Key factors—including tool wear,
suboptimal cutting parameters, material inconsistencies, and operator handling variability—were prioritized
for corrective actions to improve reliability and process consistency. In the Improve Phase, interventions
were implemented to address the identified issues. Lean tools, such as 5S, standardized work, and Kanban
systems, streamlined workflows and reduced motion waste. Simultaneously, Six Sigma techniques, including
Design of Experiments (DOE) and process capability analysis, optimized machining parameters and
minimized variation. Operator training, equipment calibration, and setup optimization further reinforced
process stability and performance gains. The Control Phase established sustainable monitoring and control
systems, including real-time performance dashboards, standard operating procedures (SOPs), and statistical
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process control (SPC) charts. Combined with continuous improvement practices, these measures ensured
long-term process stability, consistent quality, and sustained operational excellence.
The case study was structured into eight key steps for a comprehensive evaluation of LSS implementation:
1) Current Situation Analysis Before Improvement — Assessing baseline performance and identifying
operational gaps.

2) Process Defect Analysis Before Improvement — Evaluating defect patterns and root causes affecting
machining quality.

3) Process Capability Analysis Before Improvement — Measuring process stability, variation, and capability
indices.

4) Process Value-Added Time Analysis Before Improvement — Distinguishing value-added from non-value
-added activities to assess workflow efficiency.

5) Measurement System Analysis and Improvement — Ensuring the accuracy, precision, and reliability of
measurement systems.

6) Optimization of Machining Process Parameters Using Taguchi DOE — Applying Taguchi experimental
design to optimize parameters and reduce variability.

7) Results Discussion After Improvement — Interpreting gains in process performance, quality, and
productivity.

8) Lessons Learned and Implications — Highlighting key success factors, managerial insights, and strategies
for sustaining continuous improvement.

In conclusion, the case study confirmed the effectiveness of the proposed Lean Six Sigma framework.
Integrating Lean principles with Six Sigma’s statistical rigor under the DMAIC methodology led to
measurable reductions in defects and process variability, improved process capability, and enhanced overall
equipment effectiveness. The findings demonstrate that a structured, data-driven, and employee-engaged LSS
framework can substantially improve manufacturing performance and operational excellence.

5.1. Current Situation Analysis Before Improvement

A comprehensive assessment of the company’s operational performance established a baseline for LSS
application. Historical production data, process observations, and operational records were analyzed to
identify key challenges, objectives, and KPIs, summarized in Table 3. Performance gaps were identified
across three critical dimensions: Product Quality, Operations, and Critical Resources.

Regarding Product Quality, the current quality level (85.7%) and sigma level (2.57) were below targets of
90% and 2.8, indicating variability and defects that compromise product consistency. Production
inefficiencies were evident in Operations, where the production rate was 0.9 ton/hour versus a target of 1.1
ton/hour, OEE was 75.1% against 80%, and time utilization was 41.7% versus 60%. These metrics revealed
workflow bottlenecks, underutilized equipment, and suboptimal process coordination. Critical Resources,
including labor and machine productivity, were also below target, highlighting underutilized resources and
the need for workforce optimization and better equipment management.

Overall, Table 3 illustrates significant gaps across quality, operations, and resources. This baseline
assessment provided a structured foundation for applying LSS-DMAIC, enabling systematic waste reduction,
process optimization, and variation control. To monitor process stability, a 25-day survey collected average
quality ratios and process lead times (hours/ton). Figure 1 presents the quality control chart, highlighting
variability and improvement opportunities, while Figure 2 illustrates the process lead time control chart,
identifying bottlenecks and cycle time fluctuations. These tools provided benchmarks for evaluating the
effectiveness of LSS interventions.
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In conclusion, the current situation analysis established a data-driven foundation for Lean Six Sigma
implementation, enabling targeted improvements in product quality, operational efficiency, and resource
utilization, and ensuring sustainable gains in machining processes.

Table 3. Current Situation Analysis: Key Problems, Objectives, and KPIs.

Area Main Problems Objectives KPI Unit Target  Actual
. Enhance product .
Low product qualit . uality % % >90 85.7
Product P Ay quality Quality % ’
Quality ;
Low sigma level Increase sigma Sigma level - >2.8 2.57
level
Low production rate Incr@ase Production rate ton/hour >1.1 0.9
production rate
. Low overall equipment o
>
Operations effectiveness (OEE) Improve OEE OEE % >80 75.1
Low time utilization Improve time 15, ¢ uilization % >60 417
utilization
Low labor productivity Improve .laobor Labqr . ton/man-hour  >0.5 0.227
Critical productivity productivity
Resources Low machine Improve machine Machine ton/machine-
- . o >2.0 1.6
productivity productivity productivity hour

Quality % Control Chart

83

A AN .
sz . /YN N A A N
o| VI =

79 A

78 A

7+ttt

Figure 1. Quality control chart over 25 working days (Before improvement).
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Figure 2. Lead time control chart over 25 working days (Before improvement).

5.2. Process Defect Analysis Before Improvement

This phase aimed to systematically identify the root causes of defects, analyze process inefficiencies, and
address the key factors affecting machining performance. Pareto analysis (Figure 3) revealed that poor
surface finish was the most frequent and critical defect, accounting for the majority of quality issues on the
production line. In addition, seven other major defect types were identified: wrong dimension, surface burn,
axis misalignment, porosity, out-of-roundness, surface cracks, and uneven surface texture. These defects
were prioritized based on their impact on product functionality, adherence to customer specifications, and
overall process reliability. Each defect was further examined in relation to machining parameters, tool
conditions, and operational practices. Dimensional inaccuracies and axis misalignment were primarily linked
to setup errors, tool wear, or operator variability, while surface burns and cracks were associated with
excessive cutting speeds, insufficient cooling, or material inconsistencies. Quantifying both defect frequency
and severity enabled focused corrective actions on the most critical factors, enhancing product quality,
process stability, and operational efficiency.

To identify potential root causes systematically, a structured brainstorming session was conducted with
process engineers, operators, and quality personnel. The results were organized into an Ishikawa (cause-and-
effect) diagram (Figure 4), classifying contributing factors under Materials, Methods, Machinery, Manpower,
Measurement, and Environment. This approach provided a holistic view of how each factor influenced defect
occurrence and process variation. A detailed analysis was then performed specifically for poor surface finish,
the most critical defect. Figure 5 presents the root cause assessment, considering cutting parameters (speed,
feed rate, depth of cut), tool condition (wear and sharpness), machine settings (alignment and vibration),
material properties (composition and hardness), and operator practices (skill level and adherence to
procedures). This evaluation identified the most influential factors and prioritized them for corrective actions.
Following the root cause analysis, experimental studies were conducted to optimize machining parameters
for improved surface finish and reduced processing time. The Taguchi Design of Experiments (DOE) method
was applied to determine the optimal combination of cutting parameters, ensuring consistent high-quality
finishes and enhanced process stability.

Overall, this phase provided actionable insights for targeted process improvements, reduced variability,
and improved product quality. The findings established a solid, data-driven foundation for the subsequent
optimization of machining process parameters, ensuring that improvements were systematic, measurable, and
sustainable.
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Pareto Chart of Defect Types - Before Improvement
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Figure 3. Pareto chart of defect types (Before improvement).
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Figure 4. Cause-and-effect diagram for Machining Defects.
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Figure 5. Cause-and-effect diagram for bad surface finish.

5.3. Process Capability Analysis Before Improvement

This section presents the process capability analysis conducted prior to implementing the Lean Six Sigma
(LSS) framework in machining operations. As illustrated in Figure 6, the process showed a low capability
index (Cpk = 0.30), indicating it was unable to consistently meet the required specifications. Such a low Cpk
reflects high process variability and a significant risk of producing nonconforming parts, emphasizing the
need for targeted improvements. The corresponding X-R control charts (Figure 7) further highlight process
instability, with frequent excursions beyond control limits, confirming inconsistent performance and
inadequate process control. These results underscore the necessity of systematic interventions to enhance
process stability, reduce variation, and improve overall capability. This analysis provided a clear quantitative
baseline for the subsequent DMAIC improvement efforts, enabling the identification of critical areas for
corrective action and establishing a benchmark to evaluate the effectiveness of LSS implementation.

Process Data

LSL

Target

UsL

Sample Mean
Sample N
StDev(Overall)
StDev(Within)

24.8

25

25.2
25.0228
25
0.18955
0.199454

LSL Tar_get U_SL

Overall
— — —. Within

Overall Capability
Pp 0.35
PPL 0.39
PPU 0.31
Ppk 0.31
Cpm 0.35

Potential (Within) Capability
Cp 033
CPL 0.37
CPU 0.30
Cpk 0.30

24.64 2480 2496 25.12 25.28 25.44

Figure 6. Process capability analysis (before improvement).
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Xbar-R Chart - Before Improvement
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Figure 7. Process control charts (before improvement).

5.4. Process Value-Added Time Analysis Before Improvement

A detailed Value Stream Mapping (VSM) analysis was conducted to document the flow of materials,
information, and lead times within the machining process. As illustrated in Figure 8, the value-added
efficiency was approximately 37.2%, indicating significant potential for performance improvement. The
analysis also revealed multiple non-value-added activities and sources of waste, which are summarized in
Figure 9.

Figures 10 and 11, together with Table 4, provide the order lead-time analysis and demonstrate how
integrating Takt Time, Process Time, Cycle Time, and Lead Time forms a unified, time-based performance
framework for Lean manufacturing. Aligning these interdependent metrics enhances production flow,
reduces variability, eliminates inefficiencies, and improves responsiveness to customer demand. This time-
oriented perspective increases process transparency, supports data-driven decision-making, and drives
continuous improvement and sustainable value creation across the value stream.

To identify the root causes of inefficiencies, a structured brainstorming session was carried out with
process engineers, operators, and quality personnel. The consolidated results were visualized using a cause-
and-effect diagram (Figure 12), highlighting key contributors to process losses and guiding the prioritization
of improvement efforts.

This analytical phase provided a strong, data-driven foundation for targeted actions aimed at increasing
value-added time, minimizing waste, and optimizing overall operational performance.
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Lead time
* Cycle time *
Process
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Non-value- Value-
| added added | 1
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Order Manufacturing Manufacturing O.rder Order
received started ended Shipped Delivered
Figure 10. Order lead time elements.
Takt time = 360 min.
Available time per unit to meet demand
Process time = 240 min.
Time spent actively working on a unit
O Cycle time = 465 min.
Total time to produce one unit (active + waiting)
‘ Lead time = 645 min.
Total time from order to delivery
B
Order Order
received Delivered
Figure 11. Order lead time analysis (before improvement).
Table 4. Key Time Metrics in Lean Systems.
Term Definition Includes Waiting? Primary Focus Value
Takt Time Allowable time per unit to match the pace of No Aligning production with .360 .
customer demand demand min/unit
Prqcess Time spent performlng direct, value-added work No Value-added operations ’240 .
Time on the product or service min/unit
Cycle Total time to complete one production cycle, Yes Process performance 465
Time including delays and idle time p min/unit
. The entire duration from customer order to final Yes . 645
Lead Time . . Customer responsiveness . .
delivery across the value stream (all activities) min/unit
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Figure 12. Cause-and-effect diagram for non-value-added reduction.

Measurement ‘

5.5. Measurement System Analysis and Improvement

Measurement System Analysis (MSA) is crucial for evaluating the accuracy, precision, and reliability of
measurement systems, ensuring that observed process variation reflects true differences among parts rather
than inconsistencies in measurement procedures. In this study, a crossed Gauge Repeatability and
Reproducibility (R&R) analysis was conducted for each operator using a vernier caliper with a least count of
0.05 mm. Each part was measured multiple times by different operators, and the data were analyzed in
Minitab to quantify the measurement system’s contribution to overall process variation, including
repeatability (device-related variation) and reproducibility (operator-related variation). According to standard
criteria, %Study Variance below 10% indicates a highly reliable system, 10-30% is conditionally acceptable,
and above 30% is inadequate (Sumasto et al., 2025; Kumar et al., 2023).

As shown in Figure 13, the initial analysis revealed a %Study Variance of 35.67%, exceeding acceptable
thresholds. The R Chart by Operators highlighted higher variability for Operator C, while the X Chart
indicated that the measurement system itself contributed substantially to overall variance. The Parts X
Operators Interaction revealed strong interaction effects, confirming that both operator practices and part
characteristics contributed to inconsistencies. Root cause analysis using brainstorming and an Ishikawa
diagram (Figure 14) identified key factors across Methods, Machines, Operators, Materials, Environment,
and Measurement. Major issues included inconsistent measurement procedures, insufficient operator training,
calibration deficiencies, and environmental effects. Corrective actions were implemented, including
recalibration of instruments, standardization of measurement procedures, operator retraining, and improved
environmental controls. Post-improvement analysis, shown in Figure 15, demonstrated a marked reduction in
variability, with %Study Variance decreasing to 15.38%. The R Chart confirmed all measurements were
within control limits, operator effects were minimal, and part-to-part variation predominated. The Parts x
Operators Interaction displayed parallel lines, indicating a reliable and consistent measurement system. These
improvements enhanced measurement accuracy, reduced variability, and strengthened process control,
providing a robust foundation for quality assurance, process optimization, and data-driven decision-making
in the manufacturing environment.
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Figure 13. Gage R&R analysis results before measurement system improvement.
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Figure 14. Cause-and-effect diagram of the measurement system errors.
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Figure 15. Gage R&R analysis results after measurement system improvement.

5.6. Optimization of Machining Process Parameters Using Taguchi DOE

This phase focused on optimizing machining parameters using the Taguchi method to improve the surface
finish of spare parts. The Taguchi approach emphasizes quality optimization during the design phase,
allowing systematic evaluation of process parameters and their effects on performance. A Design of
Experiments (DOE) was developed, and Signal-to-Noise (S/N) ratios were calculated using Minitab 18.
Analysis of Variance (ANOVA) was applied to determine the most influential factors, guiding the selection
of optimal parameter settings (Gomaa, 2024)

Turning, a commonly used machining process, was employed to remove material from external or internal
cylindrical surfaces. The workpiece rotates at a specified cutting speed, while the cutting tool advances with a
defined feed rate and depth of cut. Factors influencing the process were classified as control or noise factors.
As shown in Table 5, cutting speed, feed rate, and depth of cut were selected as control factors. An L9
orthogonal array was used to study three parameters at three levels each. Figure 16 presents the process
parameter diagram and output objectives. The experiment evaluated the effect of these parameters on surface
roughness (Ra) and material removal rate (MRR) for ENS steel. Figure 17 shows that surface finish improves
with higher cutting speed, lower feed rate, and shallower depth of cut. S/N ratio analysis identified the
optimal combination: cutting speed 125 m/min, feed rate 0.1 mm/rev, and depth of cut 0.3 mm.

ANOVA confirmed the statistical significance of the model (Prob. > F < 0.05, Table 6). Feed rate had the
greatest impact on surface roughness, while cutting speed and depth of cut had smaller, though significant,
effects. A regression model was developed to predict Ra:

Ra=0.13111-0.006333 * N + 12.4833 * f+ 0.42222 * D 1)
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where Ra represents surface roughness, N is cutting speed, f is feed rate, and D is depth of cut. The model
achieved an R? of 0.99, demonstrating high predictive accuracy. Table 7 shows strong agreement between

predicted and measured values, with errors below 5%, confirming model reliability.

Residual analysis validated the model. Normal probability, histogram, versus fit, and versus order plots
(Figure 18) confirmed normality, randomness, and uniform variance of residuals, indicating no uncontrolled
factors affected the process. Interaction plots (Figure 19) highlighted significant interactions among

parameters, with feed rate exerting the strongest influence on Ra.

Table 5. CNC turning factors and their levels.

Control Factors Levels
Machine Type CNC Turning
Workpiece material ENS steel
Workpiece diameter Cylindrical rod ¢ 30 mm
Cutting speed (m/min) 75,100, 125
Feed rate (mm/rev) 0.1,0.2,0.3
Depth of cut (mm) 0.3,0.6,0.9
Tool type Carbide cutting tool

Tool nose radius (mm)

Coolant

0.8

Water soluble oil

Control Factors (x):

Depth of cut
Cutting speed

(x3)

(x1)

Six Sigma| Cutting

Turning
Machining
Process

Objective (Y):
Surface
Quality Roughness (Ra)
Production Material Removal
Rate (MRR)

Lean Rate

Figure 16. Process parameter diagram.
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Figure 17. Influence of the cutting parameters on the surface roughness (Ra).
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Table 6. Analysis of Variance for Surface Finish (Ra).
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Residual Observation Order

Figure 18. Residual plots for the surface roughness equation.
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Source of DF Seq SS Adj SS Adj MS F P C% Rank
N 2 0.15042 0.15042 0.07521 6769 <0.001 1.57% 2
f 2 9.35002 9.35002 4.67501 420751 <0.001 97.43% 1
D 2 0.09629 0.09629 0.04814 4333 <0.001 1.00% 3
Error 2 0.00002 0.00002 0.00001 0.0%
Total 8 9.59676 100.0%
Table 7. Comparison between actual Ra and expected Ra.
# N f D Actual Ra Predicted Ra Error-values %
1 75 0.1 0.3 1.03 1.031 -0.13%
2 75 0.2 0.6 2.41 2.406 0.15%
3 75 0.3 0.9 3.78 3.781 -0.04%
4 100 0.1 0.6 1.00 1.000 0.02%
5 100 0.2 0.9 2.37 2.375 -0.20%
6 100 0.3 0.3 3.37 3.370 0.01%
7 125 0.1 0.9 0.97 0.968 0.19%
8 125 0.2 0.3 1.96 1.963 -0.16%
0 125 0.3 0.6 3.34 3.338 3.85%
Residual Plots for Ra
Normal Probability Plot Versus Fits
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Figure 19. Interaction effect plots of surface roughness.

5.7. Results Discussion After Improvement

After implementing the Lean Six Sigma improvement plan, the project team systematically developed,
tested, and sustained enhancements in the machining process. The 7S principle (5S + Safety + Sustainability)
was applied to organize workspaces, streamline workflows, and reduce safety risks. A control plan was
established to monitor improvements, standardize procedures, document best practices, and ensure long-term
process stability. The project concluded with a formal closure report. The post-improvement results
demonstrate notable gains in process performance. Figure 20 shows the quality control chart over 25 working
days, highlighting reduced variability and defect rates. Figure 21 presents the improved process capability,
reflecting enhanced stability, consistency, and adherence to specifications.

Value Stream Mapping (VSM) analysis (Figure 22) indicated an increase in value-added efficiency to
54.1%, representing a significant improvement over the pre-improvement baseline. Analysis of non-value-
added activities and process waste (Figure 23) identified residual inefficiencies, guiding further optimization
and continuous improvement initiatives.

Overall, the findings confirm that the structured application of Lean Six Sigma, supported by systematic
monitoring, standardization, and active employee engagement, led to measurable and sustainable
improvements in product quality, operational efficiency, and process stability. The results highlight the
effectiveness of the LSS framework in fostering operational excellence and a culture of continuous
improvement.

Quality % After Improvement
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UCL=90.544

20

89

X=88.084

Quality %
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Figure 20. Quality control chart over 25 working days (After improvement).
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Figure 21. Process capability analysis (After improvement).
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Figure 22. Value stream mapping (After improvement).
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Figure 23. Value added analysis for one shift (After improvement).

5.8. Lessons Learned and Implications

The case study demonstrates that the proposed Lean Six Sigma (LSS) methodology significantly improves
supply chain efficiency, operational performance, and product quality. As summarized in Table 8 and Figure
24, key improvements over three months include: product quality increasing from 85% to 89%, sigma level
rising from 2.5 to 2.7, processing time reducing from 645 to 370 hours/ton, overall equipment effectiveness
(OEE) improving from 75% to 81%, value-added efficiency increasing from 50% to 54%, and customer
satisfaction improving from 87% to 89%. These outcomes highlight the measurable impact of a structured
LSS approach on both operational performance and customer-focused results.

Several lessons emerged from the implementation process. First, structured, data-driven deployment
ensures that improvement efforts focus on the most critical process inefficiencies, yielding measurable gains
in quality, productivity, and operational stability. Second, integrating Lean and Six Sigma tools—including
waste elimination, 5S, workflow standardization, Design of Experiments (DOE), and process capability
analysis—effectively reduces variability, optimizes machining parameters, and enhances overall process
performance. Third, employee engagement is essential: involving operators, engineers, and quality personnel
in root cause analysis, process monitoring, and standardization fosters ownership, reinforces best practices,
and sustains long-term improvements.

The study also emphasizes the value of continuous monitoring and control mechanisms. Implementing
real-time dashboards, standardized operating procedures, and control charts ensures that performance gains
are maintained, deviations are promptly detected, and corrective actions are implemented efficiently.
Measurement system analysis further guarantees that observed improvements reflect true process
performance rather than inconsistencies in measurement practices. From a managerial perspective, the
methodology offers several strategic insights. The demonstrated improvements in quality, efficiency, and
customer satisfaction confirm that LSS serves as a powerful enabler of operational excellence. Its scalable
and adaptable framework makes it suitable for other machining processes, production lines, and
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manufacturing environments, supporting broader initiatives in process standardization, waste reduction, and
quality assurance. Finally, the case study highlights that sustainable improvement requires a holistic approach
combining technical interventions with organizational and cultural change. Standardized procedures, operator
training, documentation of best practices, and a culture of continuous improvement are as critical as technical
optimization. Together, these elements create a resilient, high-performance operational environment capable
of consistently delivering quality, efficiency, and value.

In conclusion, the study confirms that a structured, systematic, and employee-engaged Lean Six Sigma
framework delivers substantial, sustainable, and measurable improvements in product quality, operational
efficiency, and customer satisfaction. Beyond operational gains, it fosters a culture of continuous
improvement, data-driven decision-making, and long-term operational excellence, providing a practical and
strategic reference for practitioners and researchers seeking to implement LSS in complex manufacturing
systems.

Table 8. A summary of process performance indicators (Before and after improvement).

Indicators Unit Target Before After

Product quality (first time) % >90 80.6 85.1
Product quality (after rework) % >95 85.7 89.0
Sigma level (first time) # >2.8 2.36 2.54
Sigma level (after rework) # >3.14 2.57 2.73
Process lead time min./ton <360 645 370
Process Efficiency % >60 37.2 54.1

OEE % >80 75 81

Value added % >55 50 54

Customer satisfaction % >92 87 89

Process KPIs Dashboard

Product quality (first
time)
1

Product quality (after

Customer satisfaction
rework)

Value added

Sigma lewvel (first time)

Sigma lewvel (after
rework)

OEE

Process Efficiency “Process lead time

Before - - After

Targets

Figure 24. A summary of process performance indicators (Before and after improvement).
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6. Conclusion and Future Work

This study investigates Lean Six Sigma (LSS) implementation in machining operations, identifying key
challenges such as (1) the lack of a unified, adaptable LSS framework for machining processes, (2) limited
empirical validation in industrial environments, and (3) insufficient evaluation of critical performance metrics
such as quality, productivity, and customer satisfaction. To address these challenges, a structured, integrated
LSS framework is proposed, combining Lean’s waste-elimination principles with Six Sigma’s data-driven
methods for defect reduction and process variation control. The framework provides a comprehensive
methodology for process optimization, quality improvement, and informed, evidence-based decision-making.

The framework was validated through a case study in a leading spare parts manufacturing company in
Egypt. Implementation yielded substantial improvements: product quality increased from 85% to 8§9%, sigma
level rose from 2.5 to 2.7, processing time decreased from 645 to 370 hours/ton, overall equipment
effectiveness (OEE) improved from 75% to 81%, value-added activities increased from 50% to 54%, and
customer satisfaction improved from 87% to 89%. These results confirm the framework’s effectiveness in
enhancing process stability, operational efficiency, and product performance.

The study demonstrates the synergistic benefits of integrating Lean and Six Sigma. Key components—
including robust measurement systems, statistical process analysis, and machining parameter optimization—
enabled consistent high-quality outputs and operational excellence. The framework provides a structured,
evidence-based approach for identifying and prioritizing improvement opportunities, offering practical
guidance for engineers, managers, and researchers aiming to institutionalize continuous improvement in
machining operations.

Theoretical Implications: The framework fills critical research gaps by providing a unified, adaptable
methodology that integrates Lean and Six Sigma specifically for machining processes, offering a basis for
further studies in process optimization and continuous improvement.

Practical Implications: Practitioners can apply the framework to systematically reduce defects, optimize
workflows, improve resource utilization, and enhance productivity.

Managerial Implications: Managers can leverage the framework to align operations with strategic
objectives, implement data-driven decision-making, and cultivate a culture of continuous improvement,
supporting sustainable operational performance.

Study Limitations: The research was conducted in a single manufacturing facility focusing on ENS steel
components, limiting generalizability across different industries, products, or organizational contexts.

Future Research Directions: Future studies can extend the framework to diverse manufacturing
environments, integrate advanced digital technologies such as real-time analytics, predictive maintenance,
and Al-based decision support, and explore the role of workforce training and human factors in sustaining
performance. Including environmental and energy-efficiency metrics could further align the framework with
sustainable manufacturing and Industry 4.0/5.0 objectives.
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Generative Artificial Intelligence Statement: The authors used the free version of ChatGPT to refine the
writing quality of some paragraphs. No generative artificial intelligence (GenAl) was used in creating the
manuscript content.
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Abbreviation Full Term Definition
5 Sort, Set in Order, Shine, Workplace organization and visual management to enhance
Standardize, Sustain efficiency, safety, and discipline
. Ongoing, incremental enhancements to eliminate waste and reduce
CI Continuous Improvement .
variation
CTQ Critical to Quality Customer-defined characteristics that directly impact satisfaction
and performance
Define, Measure, Analyze, Six Sigma methodology for designing or redesigning
DMADV . .
Design, Verify processes/products
DMAIC Define, Measure, Analyze, Data-driven improvement framework for optimizing existing
Improve, Control processes
DOE Design of Experiments Structured statistical olethod Fo evaluato process variables and
achieve optimal conditions
EMEA Failure Mode and Effects Proactive assessment to identify, evaluate, and reduce potential
Analysis failure risks
Gage R&R Gage Repeatability and Statistical evaluation of measurement system accuracy and
& Reproducibility consistency across operators and equipment
1T Just-In-Time Lean production methoo dellYers materials only when needed to
eliminate inventory waste
KPIs Key Performance Indicators Quantitative measures evaluating operational and strategic
performance
LSS Lean Six Sigma Integrated methodology combnpng Lean waste elimination and Six
Sigma variation reduction
OEE Overall Equipment Key metric of equipment productivity based on availability,
Effectiveness performance, and quality
PDCA Plan-Do-Check-Act An iterative learning and improvement cycle for systematic problem
-solving
PPM Parts Per Million Defect rate measurement per one million opportunities
RCA Root Cause Analysis Structured investigation .to .determlne the underlying causes of
deviations or defects
RCM Reliability-Centered Maintenance strategy focusing on preserving equipment function
Maintenance through optimal preventive tasks
Suppliers, Inputs, Process, High-level process mapping tool to define boundaries, stakeholders,
SIPOC
Outputs, Customers and key flows
SOP Standard Operating Procedure Documented standardized work instructions ensuring consistency
and compliance
SPC Statistical Process Control Monitoring process porformance and variation using statistical
techniques and control charts
SWOT Strengths, Weaknesses, Strategic planning tool analyzing internal and external
Opportunities, Threats organizational factors
Takt Takt Time The rate at which a product must be completed to meet customer
demand
TPM Total Productive Maintenance Holistic maintenance approach to ehrmoate failures and maximize
asset productivity
TQM Total Quality Management Organ1zat1on—w1de philosophy focused on continuous quality
improvement and customer satisfaction
vOoC Voice of Customer Systematic collection of customer needs, expectations, and feedback
VSM Value Stream Mapping Visualization of process flows to dlstlogolsh value-added vs. non-
value-added activities
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