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The global aviation logistics network, a critical artery for high-value and
time-sensitive supply chains, exhibits significant vulnerability to
disruptive shocks. Traditional risk management models, often static and
linear, fail to capture the dynamic, non-linear, and cascading nature of
such disruptions. This paper proposes a novel methodological framework
that integrates the principles of resilience engineering into a Bayesian
Network (BN) to quantitatively assess and enhance the resilience of
aviation logistics systems. The core innovation lies in structurally
embedding the three capacities of resilience—absorptive, adaptive, and
restorative—into the BN's topology. A real-world case study of a major
Asian air cargo hub (Shanghai Pudong International Airport) during the
COVID-19 pandemic is conducted to validate the model. Through
predictive, diagnostic, and sensitivity analysis, the model identifies
ground staff availability, aircraft redeployment flexibility, and regulatory
adaptability as the most critical resilience enablers. The study concludes
with strategic, data-driven suggestions for stakeholders to transition from
reactive risk mitigation to proactive resilience building, emphasizing
investment in human capital, digitalization, and collaborative ecosystem
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1. Introduction

1.1. Background and Motivation: The Fragility and Importance of Global Aviation
Logistics

The global aviation logistics network functions as the circulatory system of the modern global economy,
indispensable for the rapid movement of high-value, time-sensitive, and critical goods. Its operational
paradigm underpins just-in-time manufacturing, the global distribution of perishable commodities, and the
explosive growth of international e-commerce. However, this complex, interconnected system—comprising
airports, airlines, ground handling agents, freight forwarders, and air traffic control—is profoundly
vulnerable to a wide spectrum of disruptions. These range from localized incidents, such as extreme weather
events and labor strikes, to global systemic shocks, exemplified by the 2010 Eyjafjallajokull volcanic
eruption and the COVID-19 pandemic. The latter event, in particular, served as a stress test, exposing deep-
seated systemic fragilities. It triggered an unprecedented collapse in passenger networks (which provide
approximately 50% of global air cargo capacity in their bellies) while simultaneously causing a surge in
demand for specific goods, such as medical supplies and electronics. This paradox highlighted the critical
limitations of conventional risk management approaches and underscored the urgent need for a paradigm
shift towards understanding and quantifying system resilience: the ability to anticipate, withstand, adapt to,
and recover from disruptive events.

1.2. From Risk to Resilience: A Necessary Paradigm Shift

While traditional probabilistic risk assessment (PRA) models are valuable for understanding specific
failure modes, they possess inherent limitations in addressing the complexities of modern aviation logistics.
They are often static, linear, and struggle to account for the cascading effects, non-linear interactions, and
adaptive behaviors inherent in such complex systems. Resilience engineering offers a complementary yet
distinct paradigm. It is not solely concerned with preventing negative events (risk mitigation) but is
fundamentally focused on designing and managing systems that can endure, adapt, and maintain core
functionality amidst volatility and unexpected shocks. For the purpose of this study, resilience is decomposed
into three core, interconnected capacities:

e Absorptive Capacity: The system's ability to withstand a disruption using pre-existing resources and
structures with minimal impact. Examples include robust IT infrastructure, strategic inventory
buffers, and physical hardening of assets.

e Adaptive Capacity: The system's ability to improvise, reorganize, and adjust operations in real-time
during a crisis. This capacity is enabled by factors such as a cross-trained workforce, flexible
regulations, and operational redundancies.

o Restorative Capacity: The system's ability to return efficiently and effectively to a desired
operational state following a disruption. This is facilitated by recovery plans, redundant systems, and
resource reserves.

Quantifying these interconnected capacities demands a dynamic, probabilistic, and holistic modeling
approach that can handle uncertainty and model causal relationships.

1.3. Research Objectives and Novelty
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This paper aims to develop and demonstrate a novel integrated framework for assessing aviation logistics
resilience by embedding resilience engineering principles into a Bayesian Network (BN) methodology. The
specific objectives are:

1. To define a holistic set of metrics and variables representing absorptive, adaptive, and restorative
capacities within an aviation logistics node (e.g., a major cargo hub).

2. To construct a structured BN model that captures the causal relationships and probabilistic
dependencies between disruptive threats, resilience enablers, and system performance outcomes over
time.

3. To validate the model through a real-world case study analyzing the performance of Shanghai
Pudong International Airport (PVG) during the COVID-19 pandemic.

4. To utilize the model for generating actionable insights through predictive scenario analysis,
diagnostic root-cause analysis, and sensitivity analysis to identify critical resilience levers.

5. To derive strategic, evidence-based suggestions for stakeholders across the aviation logistics
ecosystem.

The novelty of this research lies in the explicit and structured integration of the three-tier resilience
capacity framework into a BN model specifically tailored for the aviation logistics domain, a synthesis not
thoroughly explored in existing literature.

1.4. Paper Structure

This paper is structured as follows: Section 2 reviews relevant literature on aviation logistics, resilience
engineering, and Bayesian networks. Section 3 details the methodology for integrating resilience into a BN
framework. Section 4 describes the design of the case study. Section 5 presents the results and analysis.
Section 6 discusses the key insights and implications. Section 7 provides strategic suggestions based on the
findings. Finally, Section 8 concludes the paper by summarizing the research, acknowledging limitations, and
suggesting future work.

2. Literature Review

2.1. Aviation Logistics: Operations, Vulnerabilities, and KPIs

Aviation logistics is a well-studied field, with research often focusing on network optimization (Zhang et
al., 2021), hub-and-spoke efficiency (Lin et al., 2022), and operational challenges. Key Performance
Indicators (KPIs) central to these studies include cargo throughput (tonnage), warehouse turnaround time,
aircraft utilization rates, and on-time performance. Recent studies have begun to catalog the vulnerabilities of
this network, highlighting its susceptibility to demand fluctuations, capacity constraints, and external shocks
(Ishfaq & Bajwa, 2019). The COVID-19 pandemic generated a significant body of new research
documenting the immediate impacts, such as the loss of belly-hold capacity and skyrocketing freight rates
(Gardiner, 2020; Sun et al., 2022). However, many of these studies remain descriptive, focusing on
the impact rather than the systemic response and recovery capabilities.

2.2. Theoretical Foundations of Resilience Engineering

Resilience engineering originated in high-reliability organizations like aviation and nuclear power and has
since been applied to supply chain management. Hollnagel (2018) defines it as "the intrinsic ability of a
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system to adjust its functioning prior to, during, or following changes and disturbances." This perspective
moves beyond robustness to include concepts of flexibility and adaptability. In supply chain literature,
resilience is often framed as a strategic capability (Hohenstein et al., 2021; Dubey et al., 2023). A common
approach is to quantify resilience as the normalized area under a performance trajectory curve, measuring the
deviation from and return to a baseline level of operation. This theoretical foundation provides the conceptual
building blocks—absorption, adaptation, and recovery—that our methodology seeks to operationalize.

2.3. Quantitative Models in Supply Chain and Aviation Resilience

Various quantitative models have been employed to study resilience. System Dynamics (SD) models are
effective for capturing feedback loops and time-delayed effects (Ivanov, 2021). Agent-Based Models (ABM)
simulate the interactions of autonomous agents to emerge system-level behavior. Optimization models focus
on designing resilient networks under uncertainty. However, SD and ABM can be data-intensive and
computationally expensive, while optimization models often struggle with the "softer" aspects of resilience,
such as human adaptability and management quality.

2.4. Bayesian Networks in Complex System Reliability and Resilience Analysis

Bayesian Networks (BNs) are probabilistic graphical models that represent a set of variables and their
conditional dependencies via a Directed Acyclic Graph (DAG). They are particularly powerful for reasoning
under uncertainty, combining different data types (both quantitative and qualitative), and updating beliefs as
new evidence emerges. BNs have been successfully applied to complex system reliability analysis (Khakzad
et al., 2018), supply chain risk assessment (Hosseini & Barker, 2019), and, more recently, resilience analysis
(Faroqi et al., 2023; Ademujimi et al., 2022). Their ability to perform both forward (predictive) and backward
(diagnostic) inference makes them uniquely suited for resilience studies, where understanding the root causes
of failure is as important as predicting outcomes.

2.5. Identification of Research Gap

A critical gap exists in the current body of knowledge. While the concepts of resilience are established,
and BNs are recognized as a powerful tool, there is a lack of integrated, quantitative models that explicitly
and dynamically model all three resilience capacities (Absorptive, Adaptive, Restorative) within the specific
context of aviation logistics. Most existing studies focus on one aspect in isolation—e.g., risk assessment or
recovery optimization—but fail to provide a holistic view of the entire resilience cycle. This research seeks to
fill this gap by constructing a BN that explicitly incorporates these capacities to analyze a major disruptive
event.

3. Methodology: Integrating Resilience into a Bayesian Network Framework

3.1. Defining Resilience for Aviation Logistics

For this study, aviation logistics resilience is quantitatively defined as: The probabilistic ability of an air
cargo hub and its connected network to maintain a desired level of cargo throughput and velocity during and
after a disruptive shock, enabled by its absorptive, adaptive, and restorative capacities. The primary KPI
is Cargo Throughput as a Percentage of Baseline.
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3.2. Step 1: Node Identification and Categorization

Nodes were identified through a synthesis of academic literature and structured expert elicitation workshops

involving five professionals from a global logistics firm and an airport operations authority. Nodes were

categorized as follows:

Threat Node (T): Pandemic Severity Index (States: Low, Medium, High, Severe)
Resilience Enabler Nodes (R):
o Absorptive Capacity Nodes: 1T System Robustness, Financial Resilience, Pre-existing
Strategic Inventory Buffer
o Adaptive Capacity Nodes: Staff Cross-training Level, Regulatory Flexibility, Aircraft
Redeployment Flexibility
o Restorative Capacity Nodes: Staff Availability, Vaccination Rate, Spare Parts Inventory for
Ground Equipment
Intermediate Nodes: Available Cargo Capacity, Ground Handling Efficiency, Staff Availability
Performance Node (P): Cargo Throughput % of Baseline (States: <40%, 40-70%, 70-90%, >90%).
This node is modeled for three time periods: t0 (pre-shock), t1 (peak disruption), t2 (recovery).

3.3. Step 2: Topology Construction (DAG Development)

A Directed Acyclic Graph (DAG) was constructed to represent the causal relationships between the nodes.

Key relationships included:

The Pandemic Severity node directly influences Passenger Flight Capacity (a major source of belly
cargo) and Staff Availability (due to illness and restrictions).

Aircraft Redeployment Flexibility (Adaptive) directly affects Available Cargo Capacity by allowing
the conversion of passenger aircraft or addition of freighters.

Staff Cross-training Level (Adaptive) mitigates the impact of low Staff Availability on Ground
Handling Efficiency.

Regulatory Flexibility (Adaptive) influences multiple nodes, including the ability to operate cargo-
only passenger flights and expedite crew clearances.

Vaccination Rate (Restorative) directly influences the recovery of the Staff Availability node at
time t2.

Available Cargo Capacity and Ground Handling Efficiency are parent nodes to Cargo Throughput at
tl.

3.4. Step 3: Parameterization - Eliciting Conditional Probability Tables (CPTs)

CPTs were populated using a structured expert elicitation process following established protocols (e.g., the

Sheffield Elicitation Framework). Experts were asked to assign probabilities to the states of a child node

given all combinations of its parent nodes' states. For example: "Given Pandemic Severity = Severe and Staff

Cross-training Level = High, what is the probability that Ground Handling Efficiency is in state 'Medium'?"
These subjective judgments were then calibrated and refined against actual, aggregated operational data from

PVG during 2020-2022 where available, creating a hybrid model that combines expert knowledge with

empirical evidence.

3.5. Step 4: Validation and Model Checking
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The model was validated through historical replay. The state of the Pandemic Severity node was set to
reflect the known timeline of waves in Shanghai. The resulting probability distributions output for the Cargo
Throughput nodes at t1 and t2 were compared against the actual reported cargo volume data from PVG. The
model's ability to replicate the sharp decline and slow, staggered recovery trajectory served as validation for
its basic predictive accuracy.

3.6. Step 5: Analysis Framework

The validated BN was used for three types of analysis:

e Predictive Analysis (Forward Inference): Setting evidence on the Threat and Resilience
Enabler nodes to query the probable state of the Performance nodes. Used for scenario planning.

e Diagnostic Analysis (Backward Inference): Setting evidence on the Performance nodes (e.g.,
observing a system failure) to update the probabilities of the root causes (Threat and Enabler nodes).
Used for root cause analysis after an incident.

e Sensitivity Analysis: Identifying which Resilience Enabler nodes have the greatest influence on
the Performance node using metrics like Variance of Belief or Mutual Information. Used to prioritize
investment and policy decisions.

4. Case Study Design: Pandemic Disruption at Shanghai Pudong International
Airport (PVG)

4.1. Case Selection

Shanghai Pudong International Airport (PVQG) was selected as the case study subject. It is one of the
world's busiest cargo airports, a primary gateway for China's international trade, and was subjected to
significant and prolonged disruptions during the COVID-19 pandemic, including strict lockdowns in 2022.
This makes it an ideal, if extreme, case for testing a resilience model.

4.2. Data Collection

Data was collected from multiple sources:
e Public Data: Aggregated monthly cargo throughput statistics from the Airports Council International
(ACI) and CAAC.
e Industry Reports: Analyses from IATA, WorldACD, and logistics consultancies on capacity, rates,
and operational challenges during the period.
o Expert Elicitation: Structured interviews provided the crucial data for CPTs and contextual
understanding that pure numerical data cannot, such as the practical impact of Regulatory Flexibility.

4.3. Model Instantiation

The general BN model described in Section 3 was instantiated with nodes and probabilities specific to
PVG's operational context. For example, the Regulatory Flexibility node was tailored to include specific
Chinese aviation policies and their evolution during the pandemic.

5. Results and Analysis

5.1. Model Validation
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The model successfully replicated the broad contours of the disruption at PVG. Setting the Pandemic
Severity node to "Severe" resulted in a dramatic shift in the probability distribution of Cargo Throughput at
tl. The probability of throughput being >90% dropped to less than 10%, while the probability of it being in
the 40-70% range rose to over 65%. The slow recovery was also captured, with the Throughput at t2 node
showing a high probability of a prolonged period in the 70-90% range before full recovery.

5.2. Predictive Analysis: Scenario Testing

A new severe pandemic-like shock was simulated. The baseline prediction (with all enablers at their pre-
pandemic levels) showed only an 11% probability of maintaining >70% throughput. Interventions were then
tested:
¢ Scenario A (Enhanced Adaptation): Setting Staff Cross-training Level and Aircraft Redeployment
Flexibility to High increased the probability of >70% throughput to 35%.
e Scenario B (Enhanced Restoration): Setting Staff Availability Planning and Vaccination
Rate to High showed a more modest improvement for t1 (18% probability) but dramatically
improved the recovery curve for t2, reducing the expected time to 90% recovery by approximately
50%.

5.3. Diagnostic Analysis

When the model was updated with evidence that Cargo Throughput at t1 = <40% (representing the worst-
case observed scenario), the probabilities of the parent nodes updated. The analysis confirmed the obvious
root cause (Pandemic Severity = Severe) but, more importantly, highlighted the key
contributing vulnerabilities: the probability of Staff Availability being "Low" increased to 92%, and the
probability of Passenger Flight Capacity being "Very Low" increased to 98%. This moves the analysis from
"the pandemic caused it" to "the pandemic exposed our critical dependencies on passenger traffic and a non-
redundant workforce."

5.4. Sensitivity Analysis

A sensitivity analysis on the Throughput at t1 node was conducted. The results, measured by the variance
reduction in the target node, identified the following as the most influential resilience enablers:
1. Staff Availability (Most Critical)
2. Aircraft Redeployment Flexibility
3. Regulatory Flexibility
4. IT System Robustness
This finding suggests that investments in human capital and operational flexibility likely yield higher
marginal returns for resilience than investments in physical infrastructure alone for a hub like PVG.

6. Discussion of Insights

The results confirm that resilience is an emergent property of a complex network of interrelated factors.
The COVID-19 disruption was not a single-point failure but a cascade: the collapse of passenger networks
(removing belly capacity) interacted with staff shortages (reducing handling efficiency), which was
exacerbated by initially inflexible regulations. The BN model effectively captured these non-linear
interactions and feedback loops.
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The extreme sensitivity of the model to Staff Availability underscores a often-overlooked truth: the
resilience of a highly technological system is frequently dependent on human factors. Policies that protect
and sustain the workforce are not just social goals but are critical operational imperatives.

Furthermore, the high ranking of Regulatory Flexibility highlights the crucial role of government and
policy bodies as enablers (or inhibitors) of resilience. This suggests that advocacy for flexible, pre-negotiated
contingency measures is a key strategic activity for logistics firms and airport operators.

7. Strategic Suggestions
Based on the model's insights, the following evidence-based suggestions are proposed:
7.1. Short-Term Tactical Adjustments (0-12 months)

e Invest in Human Resilience: Implement mandatory cross-training programs for critical ground
operations staff. Develop and test robust contingency plans for staff absenteeism exceeding 30%.

e Pre-Negotiate Regulatory Waivers: Work with aviation authorities to pre-approve contingency
measures, such as streamlined processes for cargo-only passenger flights and expedited crew
certifications during declared disruptions.

7.2. Medium-Term Strategic Investments (1-3 years)

¢ Diversify Capacity Sources: Incentivize the development and leasing of dedicated freighter aircratft.
Explore investment in convertible "combi" aircraft to reduce structural reliance on passenger belly-
hold capacity.

o Digitalization and Visibility: Invest in Al-powered predictive analytics for demand forecasting and
disruption simulation. Implement IoT sensors across the logistics chain for real-time visibility,
enabling more adaptive decision-making.

o Inventory Strategy: For critical clients, develop a shared understanding of strategic inventory
buffers that can absorb transport delays, moving from a pure just-in-time to a "just-in-case" model
for essential items.

7.3. Long-Term Ecosystem Building (3+ years)

o Foster Collaboration: Establish a joint crisis management center involving airports, airlines,
logistics giants, and government regulators. Focus on creating shared situational awareness and a
single source of truth during disruptions.

e Standardize Data Protocols: Advocate for industry-wide data standardization to enable seamless
information sharing between different actors in the supply chain, enhancing collective adaptability.

8. Conclusion

This paper developed and validated a robust Resilience Bayesian Network framework for the quantitative
assessment of aviation logistics systems. By explicitly integrating absorptive, adaptive, and restorative
capacities into a probabilistic model, it provides a powerful tool for moving beyond descriptive case studies
and reactive risk management. The application to Shanghai's PVG airport during the COVID-19 pandemic
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demonstrated the model's ability to replicate complex disruption trajectories, identify critical vulnerabilities,
and test the efficacy of potential mitigation strategies.

The primary limitation of this approach is the dependency on expert judgment for parameterization, which
can introduce bias. Future work will focus on integrating more objective data from simulations and advanced
learning algorithms to refine the CPTs. Furthermore, the model could be expanded into a dynamic BN to
more explicitly capture temporal evolution or scaled to model multi-hub network effects.

In conclusion, this resilience-centric, Bayesian approach offers a paradigm for building more robust,
adaptable, and recoverable aviation logistics networks for an increasingly volatile global environment.
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